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Abstract. The strong chromatic number, χs(G), introduced by Alon,
is the least integer k such that in whichever way we add disjoint
cliques of order k to the vertex set of G, or, if k doesn’t divide
|V (G)|, to G with an appropriate number of added isolated vertices,
the chromatic number doesn’t rise above k. Alon conjectured that
χs(G) ≤ 2∆(G). If this upper bound is the correct one, this leaves
room for only two values of χs for graphs with maximum degree 2,
namely 3 ≤ χs(G) ≤ 4. We give a partial characterisation of which
graphs with ∆(G) = 2 has χs(G) = 3 or 4. We present some compu-
tational evidence of a conjecture as to a full characterisation.
We also show that χs(G) = k implies that G with added m-cliques

for m ≥ k has chromatic number m. This has often been attributed
to Fellows, but his result is only for infinite graphs, where divisibility
ceases to be an issue.
Finally, we propose a slightly different colouring parameter.

1. Introduction

The strong chromatic number χs(G) of a graph G is the smallest integer
k such that G is strongly k-colorable. G is strongly k-colorable if any
partition π of V (G) into parts of size k (a k-exact partition) allows an
orthogonal partition (thus consisting of k sets) π⊥ with sets independent
in G. Another equivalent formulation is obtained by adding disjoint k-
cliques on the same vertex set, and asking if the resulting graph is k-
colorable, no matter how the cliques were added. Both formulations will
be used in what follows. If k ∤ n = |V (G)|, we add k⌈n/k⌉ − n isolated
vertices to G, to allow for a k-exact partition.
The parameter is well-defined, because χs ≤ n, trivially, and because of

the fact that any non-empty set of positive integers has a greatest lower
bound. That strong k-colorability implies strong (k + 1)-colorability is
not absolutely trivial, and the usual source of reference for this claim is
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Fellows [2]. In that paper, however, the actual theorem is proven only
for infinte graphs, where divisibility ceases to be a problem, in the sense
that any infinite set allows both a k-exact and a (k + 1)-exact partition.
Therefore, we prove that the monotonicity property holds in general for
finite graphs, in Theorem 2.2 below.
Not much is known about χs. Trivially, χs(G) ≥ χ(G). All graphs

with maximum degree 0 have strong chromatic number 1, all graphs with
maximum degree 1 have strong chromatic number 2 (which can also be
easily seen), but when the maximum degree is 2, no complete character-
isation is known. For connected graphs with maximum degree 2, we give
a complete characterization of the strong chromatic number in Section 3.
We also know that χs(G) ≥ 3 for all graphs G with maximum degree 2.
It cannot be 2, as we may connect the two neighbours of a 2-valent vertex
with an edge (that is a K2), making a triangle, which is not 2-colorable.
In the same way, for any d and any graph with ∆(G) = d it also holds
that χs(G) ≥ d+1. To see this, we observe that we may place a d-clique
on the neighbours of a d-valent vertex, creating a (d+ 1)-clique, which is
not d-colorable.
We follow Alon [1] in setting χs(d) = max{χs(G)}, where d is a positive

integer, and the maximum is taken over all graphsG with maximum degree
d. Fleischner and Stiebitz [4] give a family of graphs with maximum degree
d, that are not strongly (2d−1)-colorable, thereby establishing χs(d) ≥ 2d.
On the other hand, Haxell [5] has χs(d) ≤ 3d − 1. Also, if |V (G)| ≤ 6d,
Johansson, Johansson and Markström [8] have χs(G) ≤ 2d.

2. Establishing when χs(G) = 3

When we investigate χs(d), we may restrict ourselves to d-regular graphs.
This is so, because when we ask for the strong chromatic number of a
graph G with ∆(G) = d, if G is not regular, we may instead instead ask
for the strong chromatic number of the graph obtained by taking a suitable
number of copies of G, and connecting low-degree vertices to produce a
d-regular graph. The strong chromatic number may have gone up, but we
are still in the class of graphs with maximum degree d.
Furthermore, we may assume that no added clique has any edge paralell

to an edge already present in the graph: If the edge in G is e = {u, v},
we construct an auxiliary graph by making a copy of G, with all cliques
present, where the copied edge is named f = {x, y}, and connect u to x,
and v to y. We then remove the connection between u and v, and between
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x and y. Note that the added cliques still establish connections uv and xy.
G has strong chromatic number less than or equal to that of the auxiliary
graph, and the auxiliary graph is still in the class of d-regular graphs.
The following proposition can be found in [2], but we state it here with

a new proof, in a more graph-theoretic formulation.

Proposition 2.1. Let G be a disjoint union of graphs on at most k ver-
tices. Then χs(G) ≤ k.

Proof. We construct a bipartite graph B = (B1, B2) as follows: Let each
component of G be a vertex in B1 and each added k-clique a vertex in
B2. Two vertices u ∈ B1 and v ∈ B2 are connected iff the component
and the clique they represent share a vertex. Note that multiple edges
are allowed. We see that ∆(B) ≤ k, and therefore B has an edge coloring
using k colors. This edge coloring gives a coloring of the vertices in G, such
that no two vertices in the same added clique or in the same connected
component of G receive the same color. Thus, this coloring is proper with
respect to the k-cliques added, and χs(G) ≤ k. �

The next theorem establishes that strong k-colourability is a monotone
property, even for finite graphs.

Theorem 2.2. Let G be strongly k-colorable. Then G is strongly (k+1)-
colorable.

Proof. For ease of notation, we let H = G∪ (k⌈n/k⌉−n)K1, |H| = mk =
k⌈n/k⌉, where n = |V (G)|. Let ℓ be the smallest positive integer such
that L = |V (G)| + ℓ is a multiple of k + 1. We distinguish three cases:
L < mk, L = mk and L > mk.
The case L = mk. This part is the method of proof from [2] (and the
other parts are similar). Suppose we are given a (k+1)-exact partition π
of V (G) ∪ ℓK1 = V (G), and cliques are added to each C ∈ π.
Take any transversal T of π. If T were independent, we would be

finished, for then we could let T be the color class ck+1, and color the
remaining graph with k colors (which is possible because the remaining
graph is an induced subgraph of G, and therefore has lower strong chro-
matic number). Of this, however, we can not be sure. Instead, we observe
that k divides |T |, so that T allows a k-exact partition, πT . If we set
C ′ = C − T for each C ∈ π, then π′ = πT ∪ {C

′ : C ∈ π} is a k-exact
partition, and there is an independent transversal T ′ whose parts are the
color classes in a proper k-coloring of G.
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Let R = T ′ ∩ (∪C∈πC
′). Then R is an independent transversal of π,

and we are finished.
The case L < mk. We know then that 0 ≤ ℓ < k. Let π be a (k+1)-exact
partition of V (G)∪ℓK1. Take any transversal T of π. Let πT be a partition
of T in parts of size k, with one part Tp of size p = k − (mk − n − ℓ), so
that k = p+ (mk− n− ℓ) = p+ (|H| − |V (G)| − ℓ) = p+ q, where q < k.
We set C ′ = C−T for each C ∈ π By adding q isolated vertices to G, and
placing them in the part Tp, we create a k-exact partition πH of V (H)
consisting of the C ′ and the parts of πT with the part Tp extended to T

′
p.

Take an independent transversal TH of πH where the vertex chosen from
T ′p is not one of the q added ones. Such a transversal exist, since there in
fact exist an orthogonal partition to πH .
Let R = TH ∩ (∪C∈π). Then R is an independent transversal of π, and

we are finished.
The case L > mk. Take a (k + 1)-exact partition π of V (G) ∪ ℓK1.
If |C ∩ (ℓK1 − (V (H) − V (G)))| = 1 for each C ∈ π, we proceed as

follows: Let T be a transversal of π, containing all the vertices from
F = ℓK1 − (V (H)− V (G)). We let πF = {C ∈ π : C ∩ F 6= ∅}. Partition
T−F in parts of size k, and name this partition πT−F . If we again set C

′ =
C −T for each C ∈ π, we have a k-exact partition π′ = πT−F ∪{∪C∈πC

′}
of V (H). By assumption, π′ has an independent transversal T ′. Then
R = T ′∩{∪C∈πC

′} is an independent transversal of π, with R ⊂ V (G). If
we set R′ = R−{∪C∈πFC}∪F , we still have an independent transversal to
π. If we let R′ be the color class ck+1, and remove these vertices, we retain
an induced subgraph of H, and a k-exact partition π′′ = {C−R′ : C ∈ π},
that can be k-colored by assumption.
If |C ∩ F | ≥ 2 for some C ∈ π we proceed as follows: Observe that

0 < ℓ ≤ k. Let πF be as above, and π2 be the C ∈ πF with |C ∩ F | ≥ 2.
Take a transversal T to π containing a vertex from each C ∩ F for each
C ∈ πF . We set C

′ = C − T for each C ∈ π. Then π′ = {∪C 6∈πFC
′}

is a k-exact partition of an induced subgraph of G, and so there is an
independent transversal T ′ to π′.
Then R = T ′ ∩ {∪C 6∈πFC} is an independent set in V (G), and R

′ =
R∪(F ∩T ) is an independent transversal to π. We let R′ be the color class
ck+1. Removing R

′, the number of remaining vertices is a multiple of k, so
G′ = G∪ ℓK1−R

′ can be regarded as a subgraph of H, where we pretend
that the remaining vertices from F are vertices in H, with all incident
edges removed. G′ is thus a spanning (containing all vertices) subgraph of
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an induced subgraph of H, and a k-exact partition πH = {C−R
′ : C ∈ π},

which by assumption allows a k-coloring. �

3. The connected case

As is well known, Fleischner and Stiebitz [3] have χs(C3n) = 3. This is the
so-called “cycle-plus-triangles” problem. For a proof from first principles
(which contrary to popular belief does not seem to give an effective al-
gorithm for actually finding a colouring) see [9]. Häggkvist and Johansson
[6] have established that the exact same method of proof as in [3] will work
for C3n+2, i.e. “cycle-plus-triangles-plus-chord”, and thus χs(C3n+2) = 3.
Thus we also have (for n ≥ 1, of course) χs(P3n) = χs(P3n+2) = 3.
Two old examples where χs = 4 appear in the literature: One is a C4,

where we place opposite corners together in the partition, preventing a 3-
coloring. For C7, an example attributed to H. Sachs (see [4]) is as follows:
Connect vertices v1 and v3 by an edge, vertices v2, v4 and v6 by a triangle,
and vertices v5 and v7 by an edge. The single edges are then joined to
one isolated extra vertex each, to produce triangles. This graph is not
3-colorable. According to Jensen and Toft [7], Huang noted in 1993 that
all C3n+1 have strong chromatic number 4, but since the construction we
present here can be used in other settings, we again prove that fact.

Proposition 3.1. χs(C3n+1) = 4 for all n.

Proof. C4 is not strongly 3-colorable as observed above, by choosing cross-
ing chords, so for n = 1, the proposition holds.
Suppose now that we have established the result for n = m. We choose

two neighbouring vertices in C3m+1 with added triangles and chords, rep-
resented in Figure 1 by a triangle and a square vertex respectively, and
insert a triangle between them, again as depicted in Figure 1. The res-
ulting graph is a C3(m+1)+1 with added triangles, and if it is 3-colorable,
then so was the original graph.

→

Figure 1. Inserting a triangle in a cycle
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Thus, by induction, we are finished. �

A more direct description of one of the possibilities of inserting triangles
is the following:
For n ≥ 3, we construct a graph H3n+1 starting with a C3n+1, with

vertices numbered v1, v2, . . . v3n+1, connecting v3i, v3i+2 and v3i+4 as a
triangle, for each 1 ≤ i ≤ n − 2. Additionally, make v2, v4 and v3n into
a triangle, and connect v3n−1 to v3n+1, and v3n−3 to v1. To see that the
resulting graph is not 3-colorable, we color the triangle i = 1 with colors
a, b and c, in this order along the cycle. This immediately forces the colors
on vertices v4 and v6, and then the colors on vertices v2 and v8, and by
the way the triangles are interlaced, every color is forced. Each triangle
will have the colors a, b, c in that order along the cycle. In the end, the
colors forced on the two single edges will conflict.
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Figure 2. H10 and H13

In fact, the family of 4-chromatic graphs constructed in the proof is also
4-critical: If either end of one of the two chords is removed, our ground for
conflict is neutralized, and we can make do with 3 colors. The same holds
for the removal of any vertex in the neighborhood of the chords. Finally,
if the chain of interlacing triangles is broken, we see that we gain enough
freedom that the order of the colors may be changed to avoid conflict on
the two chords.
Another family of examples, with crossing chords, may be directly con-

structed as follows.
For each n ≥ 3 we construct a graph Xk,l, where k, l ≥ 1, k+ l+ 1 = n

from a cycle on 3n + 1 vertices: Make vertices v2, v3n+1 and v3n−1 a
triangle. For 1 ≤ i ≤ k make vertices v3i, v3i+2 and v3i+4 a triangle. For
1 ≤ j ≤ l make vertices v3(k+j)+2, v3(k+j)+4 and v3(k+j)+6 a triangle, where
the last vertex in the triangle j = l will be v3(k+l)+6 = v3(n−1)+6 = v3n+3,
which, indices taken modulo 3n + 1 is the vertex v2. Finally, add the
chords from vertex v1 to v3i+3 and from vertex v3i+6 to v4. Observe that
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Figure 3. X1,1, X2,1 and X2,2

for any k, l, the chords cross, and that for n = 3, they are crossed by an
even number (2, that is) of triangle edges. For k = 1, l 6= 1 the two chords
are crossed only by the triangle i = 1. For k, l ∈ {1, 2} the graphs are
shown in figure 3. Observe that Xk,l is isomorphic to Xl,k.
This family of graphs is 4-chromatic: Without loss of generality, we

color the triangle i = 1 with colors a, b and c in that order along the
cycle. This immediately forces the colors on all vertices v3 . . . v3k+4 by the
way the triangles are interlaced. Can we finish this coloring? We observe
that the color a may not be used on vertices v1 or v2, and that the color c
may not be used on vertices v3k+5 or v3k+6. We draw the conclusion that
color a must be used on vertex v3n+1, and that the color c must be used
on vertex v3k+7. Continuing in ths fashion, we see that for 1 ≤ j ≤ l all
vertices v3(k+j)+1 must receive the color c, and so, we have a conflict on
vertex v3n+1, where we must use color c, and we must use color a.
This family of graphs is also 4-critical: If we remove any of the end-

points of the chords, the resulting graph is 3-chromatic, as can be easily
checked. If one of the chains of interlacing triangles is broken, we gain
enough freedom at this point to change the order of the colors along the
large cycle, thereby eliminating the conflict described above.
Instead of this specific description of counterexamples for each n, we

may start from the example on 4 vertices, and by means of a small gadget
succesively add triangles to create examples for any n. One example of
such a gadget is the following.
Choose two adjacent vertices on the C3n+1, and place the vertices of a

new triangle to the left of, between and to the right of these two neighbor-
ing vertices, adding 3 new vertices to the cycle. Next, let the two initial
neighboring vertices switch places. It may be easily verified that if the
resulting graph is 3-chromatic, then so was the graph we started with.
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Depending on where this gadget is applied, we may get different (non-
isomorphic) examples. Also, other gadgets than this are conceivable.
For n = 1, 2 the examples described above are unique, which we have

verified by computer. For n = 3, there are non-isomorphic examples of a
cycle on 10 vertices, with two chords and two triangles added, all vertex
disjoint, that have chromatic number 4.
The question remains whether χs(P3n+1) equals 3 or 4. We resolve the

question by considering the following construction.
Take two copies of the path, and connect the ends, yielding a cycle on

6n+ 2 vertices. By the above, this cycle has strong chromatic number 3,
and as each subgraph will have lower strong chromatic number, we have
χs(P3n+1) = 3.

4. The 2-regular case

By Proposition 2.1, a disjoint union of triangles has χs = 3. By Proposi-
tion 3.1, any disjoint union of cycles where some cycle has length 3n + 1
has χs ≥ 4.
By the following examples, any disjoint union G of cycles containing

both a C3m, m ≥ 1 and a C3n, n ≥ 2 has χs ≥ 4. The construction is as
follows:
The most basic example is C3 ∪ C6. Place chords in the C6 between

opposite vertices. Complete these chords to triangles by connecting both
ends to a vertex in the C3. The resulting graph is 4-chromatic, as can
be easily checked. The properties of this graph we wish to generalise to
longer cycles is that three vertices in the one cycle (here the C3) are forced
to have distinct colors, and three pairs of vertices in the other cycle (here
the C6) cannot tolerate having all distinct pairs of colors. This graph is
shown in Figure 4.
To force colors a, b and c on three special vertices of a C3m, m ≥ 1 is

quite easy: For each 1 ≤ i ≤ m − 1 make vertices 3i, 3i+ 2 and 3i+ 4 a
triangle. This leaves vertices 2, 4 and 3m, and by the way the triangles
are interlaced, these vertices necessarily all have distinct colors.
In the other cycle, C3n we proceed as follows. For 1 ≤ j ≤ n − 3, let

vertices 3j, 3j+2 and 3j+4 form a triangle. Further, make vertices 3n−6,
3n − 4 and 3n a triangle. The remaining six vertices are connected with
chords 3n−3 to 4, 3n−2 to 1 and 3n−1 to 2. Without loss of generality,
we may color the vertices of the triangle j = 1 with colors a, b and c,
in that order along the cycle. The interlaced triangles are then forced to
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Figure 4. H3,6 = C3 ∪ C6

have the same sequence of colors on their vertices along the cycle. Also,
vertex 4 gets the color b, and therefore the other end of the chord from 4
to 3n−3 gets color a. Two chords are left, where the colors are not forced.
The graph induced by G on the vertices of these two chords is a C4, and
one pair of opposite vertices must not have color a, and the other pair of
opposite vertices must not have color c. We can obviously not color this
graph using the color b twice and each of a and c once. Therefore, the
chords in the C3n can not be connected to the free vertices in the C3m, so
as to form triangles, without forcing a conflict in any 3-coloring.
For C3 ∪C6, the example is unique, but for (n,m) = (3, 9) or (m,n) =

(6, 6) there are two non-isomorphic examples. For C6 ∪ C6, if we number
the vertices in the two cycles 1, 2, 3, 4, 5, 6 and 7, 8, 9, 10, 11, 12, the
two examples are given by {{1, 4, 6}, {2, 6, 10}, {3, 8, 11}, {5, 9, 12}} and
{{1, 4, 7}, {2, 6, 9}, {3, 5, 11}, {8, 10, 12}}.
For C3∪C9 where the C3 is indexed with 1, 2, 3, the two non-isomorphic

examples are given by partitions {{1, 3, 5}, {2, 7, 10}, {4, 8, 11}, {6, 9, 12}}
and {{1, 3, 7}, {2, 4, 10}, {5, 8, 11}, {6, 9, 12}}.
All these examples may be produced from the example with C3∪C6 by

use of the gadget described in Section 3.
Examples originating from Gallai (see [4]) show that the presence of

three even cycles of equal length, or the presence of both a C2m+1 and a
C4m+2 also gives χs ≥ 4. The example for three even cycles C2j of equal
length is simply C2j × C3, the cartesian product, namely where the C3:s
are all paralell, and cross each C2j in one point each. For a C2m+1 and
a C4m+2, we may connect each diameter (chord connecting two vertices
at maximum distance from each other) of the longer cycle, in order, with
a single vertex from the shorter cycle, forming superpositioned triangles.
The resulting graph is 4-chromatic.
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These examples may be exploited first to show that χs(C3m+2∪C3n+2∪
C3k+2) ≥ 4 for all m,n, k ≥ 2. The idea is to extend one C3m+2 by three
vertices. We do this by giving two neighboring vertices in one of the C2j
in C2j × C3 the names v2 and v4. Now, around these, on the C2j, in the
order of the integers, we introduce vertices v1, v3 and v5 and connect them
as a triangle. We also switch the positions of vertices v2 and v4. If there
existed a 3-coloring of this graph, vertices v1 and v4 would necessarily
have the same color a, and the same goes for the pair v2 and v5 and some
color b 6= a. Then we could remove vertices v1, v3 and v5, and switch back
vertices v2 and v4. The resulting graph would be isomorphic to C2j ×C3,
and be properly 3-colored, which is a contradiction to χ(C2j × C3) = 4.
This is again the gadget of Section 3.
The smallest m for which 3m + 2 is even, and χ(C3m+2 × C3) = 4 is

m = 2, giving 3m+2 = 8, so this construction is valid for 3C3m+2 for any
m ≥ 2. Hence, we have shown the following proposition.

Proposition 4.1. For all m,n, k ≥ 2, it holds that χs(C3m+2 ∪ C3n+2 ∪
C3k+2) ≥ 4.

At least our case analysis is reduced to the two parametrised questions
of the value of χs(kC3∪mC5∪C3i+2∪C3j+2) where i, j ≥ 2 and k,m ≥ 0,
and χs(mC5 ∪ C3j+2 ∪ C3j+2 ∪ C3n) where i, j, n ≥ 2 and m ≥ 0.
To support our conjecturing, a verification by computer, checking all

possible partitions of the vertex set of G into sets of size 3 (with added
isolated vertices to make |V (G)| divisible by 3) gives us the information
in Table 1.

G χs(G) G χs(G) G χs(G)
C3 ∪ C11 3 C3 ∪ C3 ∪ C8 3 3C3 ∪ C5 3
C5 ∪ C6 3 C3 ∪ C5 ∪ C5 3
C5 ∪ C8 3 C5 ∪ C5 ∪ C5 3
C5 ∪ C9 3
C6 ∪ C8 3
C8 ∪ C8 3

Table 1. Some strongly 3-chromatic 2-regular graphs

With this admittedly somewhat weak evidence at hand, we present the
following conjecture, which is sharp if it holds true.
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Conjecture 4.2. For all i, j ≥ 2 and k,m ≥ 0 it holds that

χs(kC3 ∪mC5 ∪ C3i+2 ∪ C3j+2) = 3,

and for all i, j, n ≥ 2 and m ≥ 0 it holds that

χs(mC5 ∪ C3i+2 ∪ C3j+2 ∪ C3n) = 3.

A special case which may be a good starting point, is the conjecture
that any disjoint union of C3:s and C5:s has strong chromatic number 3.

5. The general case

For starters, any disjoint union of paths has χs = 3. Why? Because we
may add a short path (possibly raising the strong chromatic number) to
ensure that |V (G)| = 3n, and then we can connect all the paths into a
cycle (possibly raising the strong chromatic number), which has strong
chromatic number 3, by the cycle-plus-triangles theorem.
A disjoint union of triangles and paths on at most 3 vertices has strong

chromatic number 3, by Proposition 2.1. The question whose negative
answer would give a complete solution to this problem is the following.
Given a graph G with χs(G) = 3, so that ∆(G) = 2, can it be that

χs(G ∪ Pm) = 4 for some m? We need only consider the addition of one
path, for instead of adding multiple paths, we may add a long path with
the same number of vertices as the multiple paths put together. This long
path clearly has a greater chance of raising the strong chromatic number.
Also, a longer path is clearly a worse problem than a shorter one. Again,
a computer verification gives the information in Table 2.

G χs(G) G χs(G) G χs(G)
C3 ∪ P12 3 C3 ∪ C3 ∪ P9 3 3C3 ∪ P6 3
C5 ∪ P10 3 C3 ∪ C5 ∪ P7 3 2C3 ∪ C5 ∪ P4 3
C6 ∪ P9 3
C8 ∪ P7 3
C9 ∪ P6 3
C11 ∪ P4 3

Table 2. Some strongly 3-chromatic graphs

Conjecture 5.1. If the graph G has strong chromatic number 3, then so
does the disjoint union G ∪ Pn for any n.
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6. Alternative formulations

If χs(G) = k, is it also true that no matter how we add cliques on at
most k vertices to the graph G ∪ (k⌈n/k⌉ − n)K1, the resulting graph
has chromatic number k? In particular, is there a graph on 3n or 3n+ 1
vertices, that has a decomposition into a Hamilton cycle and a disjoint
union of triangles and single edges, and has chromatic number 4?
What if we add cliques on at most k vertices only to the graph G,

without additional isolated vertices? In fact, these two variations are the
same.

Proposition 6.1. If the graph G with superimposed cliques of size at most
k is k-chromatic then so is the graph G ∪mK1 for each m ≥ 0.

Proof. For m = 0 this is trivial. If we remove a single isolated K1, we
lower m by one, and we reduce a clique by one. We now have the graph
G∪ (m− 1)K1 with superimposed cliques on at most k vertices, which we
may color with k colors. The removed vertex has at most k−1 neighbours,
and we may complete the coloring properly. �

We dub this property (in any of its equivalent formulations) strongly k≤-
colorable, and write χ≤s (G). For this parameter, monotonicity holds too,
and that this is easier to prove should come as no surprise, considering how
well-suited this parameter is to an inductive scheme. If k is the smallest
integer such that G is strongly k≤-colorable, we say that G is strongly
k≤-chromatic.

Proposition 6.2. Let G be strongly k≤-colorable. Then G is strongly
(k + 1)≤-colorable.

Proof. Let π be a partition of V (G) with parts of size at most (k + 1).
Further, let πk+1 be the parts with exactly (k + 1) elements. Of course,
πk+1 may be empty, in which case we have nothing to prove. If we can
find an independent set R of vertices in G that is a transversal to πk+1 we
may let this transversal be the color class given color ck+1 and proceed
to color the remaining graph, which is now partitioned in parts of size at
most k, with k colors. This is possible, because the remaining graph is an
induced subgraph of G.
Let T be any transversal to πk+1, and for C ∈ π set C

′ = C − T . Let
πT be a partition of T with parts of size at most k (possibly empty, or
consisting of a single part). Then π′ = πT ∪{C

′ : C ∈ πk+1} is a partition
of V (G) with parts of size at most k. By assumption, this partition has
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an independent transversal, T ′, that contains elements from each class of
size k, including, but not limited to, all classes previously of size (k + 1).
Setting R = T ′ ∩ (∪C∈πC

′), we see that R is an independent set in G,
because T ′ is independent, and that R is a transversal to πk+1. The rest
of the orthogonal partition may be found by the induction hypothesis. �

It may appear that strong k≤-chromaticity is strictly stronger than
strong k-chromaticity, but the added flexibility in assigning the depend-
encies is countered by the fact that there are less of them. For example,
two triangles added to 6 vertices on a cycle contain 6 edges, whereas the
three edges we may add to 6 vertices, though more flexibly so, contain
only three edges.
Any G with ∆(G) = 0 is trivially 1≤-chromatic, and ∆(G) = 1 implies

2≤-chromaticity, as is also the case with χs. Also, we can mimic the proof
of Proposition 2.1 for the parameter χ≤s , so that if G is a disjoint union
of components with at most k vertices, then χ≤s (G) = k.

Proposition 6.3. Let χs(d) = k. Then χ
≤
s (d) = k.

Proof. Obviously, strong k≤-chromaticity implies strong k-chromaticity.
Also, if χs(d) = k, then every graph G with maximum degree d is strongly
k≤-colorable. To see this, place the cliques on at most k vertices on G, and
add isolated vertices to G and interpret them as parts of the cliques that
do not have k vertices, so as to ensure that all cliques have uniform size
k. The resulting graph G still has maximum degree d, and so is strongly
k-colorable. Therefore, the original G is strongly k≤-colorable. �

Corollary 6.4. Let G be a disjoint union of paths and cycles. Then,
provided χs(2) = 4, it holds that χ

≤
s (G) ≤ 4.

If we do not care to apply Corollary 6.4, we may in a fashion similar
to Proposition ?? prove that any disjoint collection G of even cycles, any
paths and a number of C3 has χ

≤
s (G) ≤ 4 (the only difference being that

M is not a perfect matching, which in effect makes the coloring f more
flexible), and in general we expect the two parameters χs and χ

≤
s to be

the same for all graphs.
A counter example to the following conjecture would indeed be interest-

ing. For example, is there a graph on 3n vertices that has a decomposition
into a Hamiltonian cycle and disjoint triangles and edges, with chromatic
number 4? If there are no triangles, the chromatic number is 3 by Brooks’
theorem, and if there are at most n triangles and edges, the cycle plus
triangles theorem can be applied to prove that the chromatic number is

13



3. A computer verfication gives, for instance, that a C12 with at most 3
chords and some triangles has chromatic number 3.

Conjecture 6.5. Let G be a graph with χs(G) = k. Then the graph G ∪
mkK1 is strongly k-chromatic for each m ∈ N. In other words, χs(G) =
χ≤s (G) for any G.

The real formulation of the parameter should be something like

Definition 6.6. We say that the graph G is stable k-colorable if any
graph obtained from G by adding disjoint graphs with maximum degree
less than or equal to (k − 1) to the vertex set of G is k-chromatic. If k
is the smallest integer such that G is stable k-colorable, we say that G is
stable k-chromatic, and write χs(G) = k.

Stable k-chromaticity trivially implies strong k≤-chromaticity. Again,
if the graphs added are not all cliques, we gain in flexibility, but may lose
in density, though not always strictly.
The proof of monotonicity proceeds along the lines of proposition 6.2.

Also, whether the ground set is G or G ∪ (k⌈n/k⌉ − n)K1 is immaterial.
Loosely stated, then, k is the minimum number that guarantees we can
color the graph with k colors, even if new edges are added, only not more
than k − 1 of them at each vertex. In other words, k colors can handle
some limited changes to the graph, and is therefore a fitting chromatic
number for graphs that are not eternally fixed.
For d = ∆(G) = 0, 1 we have, respectively, χs(G) = 1 = χ

s(G) and
χs(G) = 2 = χ

s(G). Perhaps unfortunately, stable and strong chromati-
city are not the same, as the following example (where d = 2) shows:
Take the graph G consisting of three disjoint triangles. By the above,

χs(G) = 3, but by adding a C7 to this graph, we may produce Sachs’s
example mentioned above, which has chromatic number 4, so χs(G) ≥ 4.
In fact, any 2-regular graph with strong chromatic number 4 can be used
to produce counter examples in the same way. It may be interesting,
though probably hard, to study this parameter.

7. Open problems

(1) Let G be a graph with χs(G) = k on n = |V (G)| vertices. Is the
graph H = G∪ (k⌈n/k⌉−n+mk)K1 strongly k-chromatic for any
m ∈ N? This question is equivalent to the question of whether G
is strongly k≤-chromatic.
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(2) Given a graph G with χs(G) = 3, so that ∆(G) = 2, can it be
that χs(G ∪ Pm) = 4 for some m? A negative resolution of this
question would imply the truth of Problem 1 for d = 2.
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