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1 Introduction

Unless otherwise stated, all n × n arrays in this paper will have rows and
columns indexed by the set {1, 2, . . . , n}. A Latin square of order n is an
n× n array of symbols from a set S of size n such that each symbol from S
occurs exactly once in each row and exactly once in each column. We say
that two n × n arrays avoid each other if each pair of corresponding cells
contain distinct symbols. We say that an n×n array P is avoidable if for any
set S of size n there is a Latin square of order n and symbol set S such that
P and S avoid each other. More specifically, we may say that an n×n array
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is avoidable using S, where |S| = n, if there is a Latin square with symbol
set S that avoids it. A partial Latin square of order n is an array where no
symbol occurs more than once in any row or column. Thus a partial Latin
square is permitted to have empty cells. (Note that in this paper, we allow
a partial Latin square of order n to contain more than n distinct symbols.
We are thus using a more general definition of partial Latin square than is
sometimes found in the literature. From the perspective of avoidability, it is
convenient to make this generalization, because a Latin square on symbol set
S will of course avoid any symbol not in S. Moreover, since our definition is
more general, the main result in this paper certainly holds for any definition
of partial Latin square in common usage.)

An isotopism of a (partial) Latin square is any reordering of the rows,
reordering of the columns, relabelling of the symbol set, or any combination
of these. Combinatorial properties of partial Latin squares, in particular the
property of avoidability, are preserved under isotopisms. We use this fact
throughout this paper.

The question of which n×n arrays are avoidable was posed by Häggkvist
in 1989 [4]. Chetwynd and Rhodes [3] proved that the following partial Latin
squares are avoidable.

Theorem 1.1. For m ≥ 2, all 2m× 2m and 3m× 3m partial Latin squares
are avoidable.

They also showed that there is exactly one minimal non-avoidable partial
Latin square of order 2 and exactly one minimal non-avoidable partial Latin
square of order 3, when isotopism has been taken into account. These are
given in Figure 1, and are the only non-avoidable partial Latin squares.
Chetwynd and Rhodes also conjectured that any partial Latin square of
order n ≥ 4 is indeed avoidable.
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Figure 1: Non-avoidable partial Latin squares

Cavenagh [1] proved the following theorem.

Theorem 1.2. Let P be a partial Latin square of order n = 4m + 1, where
m ≥ 1. Then P is avoidable.
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The remaining cases of the conjecture by Chetwynd and Rhodes is then
when n is congruent to 7 or 11 modulo 12. We may therefore assume that
n = 4m − 1 for m ≥ 2. In this paper, we prove that the conjecture holds in
this case as well.

2 Preparations

We shall need some preliminary results.

Lemma 2.1. Let P be a 3× 3 partial Latin square. Further suppose that P
has at least one empty cell. Then there is at most one set S of size 3 such
P is not avoidable using S.

Proof. This can be easily gleaned from the proof of Theorem 2.2 in [3]. It is
based on the fact that the 3 × 3 partial Latin square of Figure 1 is the only
such unavoidable array.

When producing a Latin square L that avoids a partial Latin square P ,
we will say that the symbol x covers a symbol s that occurs in P if x is used
in a cell in L corresponding to a cell in P where s occurs.

Lemma 2.2. Let P be an 2m × 2m partial Latin square, m ≥ 2. Suppose
that the symbol x does not occur in P . Then for any set of symbols S, where
|S| = 2m − 1, there is a Latin square L on symbols S ∪ {x} avoiding P in
such a way that x covers either only symbols from S, or at least two distinct
symbols, t1, t2 /∈ S.

Proof. First observe that P may be avoided, using some Latin square L on
symbols S ∪ {x}, by Theorem 1.1.

Suppose, for the sake of contradiction, that x covers exactly one symbol
t /∈ S. Then in L we exchange symbols x and a ∈ S, and see that unless
x again covers exactly one symbol not in S, we are finished. The same
argument holds for any other symbol in S, so unless P contains nothing but
symbols not in S we are finished. If P contains no symbols from S, we can
easily find the required Latin square.

The main obstacle in the proof of the main theorem is dealt with in the
following lemma. By 4-set we mean an unordered set of four elements. We
define a partial transversal to be a partial Latin square in which each row
has at most one symbol, each column has at most one symbol and each
symbol occurs at most once.
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Lemma 2.3. Let P be a 4 × 4 array on symbol set S, |S| = 4 such that:

1. no symbol is repeated in any row or column (except possibly in the last
column),

2. the last column is not completely filled with one single symbol,

3. the first three columns of P contain either (A) at most three distinct
symbols from S or (B) each symbol from S exactly once.

Then P is avoidable by a Latin square L on symbol set S.

Proof. Let S = {w, x, y, z}. We shall construct a Latin square L which
avoids P , where L is based on the set of symbols S and P satisfies the
conditions of the above claim. Relabelling the symbols of P if necessary, we
set the final column of L to have symbols w, x, y and z in rows 1, 2, 3 and
4, respectively, assuming that the final column of P is avoided. (Note that
this is possible because the last column of P1 is not completely filled with
exactly one symbol.) We will show that it is always possible to complete
the first three columns of L so that P is avoided.

Our aim in the following is, where possible, to complete L so that x and
w form a 2 × 2 subsquare in rows 1 and 2 and another 2 × 2 subsquare in
rows 3 and 4. Potential obstructions to this process are the existence of
x, w, z and y in rows 1, 2, 3 and 4 of P (respectively), as well as partial
transversals on x and w (or y and z) within rows 1 and 2 or within rows
3 and 4. (Recall that a transversal is the only unavoidable partial Latin
square of order 2.) Where enough obstructions make our goal impossible,
we show an alternative way to complete L.
Case A: In this case we assume that Case A of Condition (3) holds. That
is, we find at most three symbols from {w, x, y, z} in the first three columns
of P . Without loss of generality, assume that symbol z does not occur in
the first three columns of P . We write (r, c, s) ∈ P if symbol s occurs in
the cell that is the intersection of row r and column c. Now, there is at
least one column c 6= 4 such that (1, c, x) 6∈ P and (2, c, w) 6∈ P . We aim to
place symbols x and w in cells (1, c) and (2, c) of L, respectively. However
if (4, c, y) ∈ P it is then impossible to complete column c of L so that it
avoids column c of P . If this is true for a unique choice of c, then, up to
a relabelling of the first three columns, we can specify the following cells of
P , where the last column denotes symbols in L, separated by a double line.
(Since symbols w, x, y and z in rows 1, 2, 3 and 4 of P , respectively, will
always be avoided by L, we can ignore any such occurrences. We thus may
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think of the final column in these diagrams as denoting a prohibited symbol
for each row of P .)

x w

w x

y

y z

(Throughout we ignore the symbols in the final column of P , as these
are already avoided.) We label this partial Latin square P ′ and deal with it
later.

Otherwise we can complete column c of L, avoiding column c of P . Next,
since z does not occur within P , we can fill the remaining cells in rows 1
and 2 of L with symbols y and z, avoiding the corresponding cells of P . We
then have four remaining cells in rows 3 and 4 of L to fill with symbols w
and x. However the symbols w and x may form a partial transversal within
these four cells in P . There is at most one such partial transversal within
rows 3 and 4 of P , so we are done if there are two choices for c.

It follows that we can make L avoid P unless possibly when P = P ′ or
P = P ′′, where P ′′ (up to relabelling of the first three columns) is equal to

x w

w x

w y

x z

.

However P ′ is avoided by at least one of the following choices for L.

z x y w

w y z x

x z w y

y w x z

or

y x z w

w z y x

z w x y

x y w z

Also, P ′′ is avoided by at least one of the following.

z x y w

w y z x

x z w y

y w x z

or

y z x w

w y z x

z x w y

x w y z

Case B: Here P satisfies Case B of Condition (3) of the claim; that is, each
of w, x, y and z occurs exactly once in P . Here we can identify two rows of
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P , which altogether contain at most 2 symbols. Without loss of generality,
let these rows be 1 and 2.
Case B1: Suppose first that there are distinct columns c, c′ 6= 4 such that
(1, c, x) ∈ P and (2, c′, w) ∈ P . Let c′′ ∈ {1, 2, 3} \ {c, c′}.
Case B1(a): Here (4, c′′, y) ∈ P but (3, c′′, z) 6∈ P . Then we have P ′ ⊂ P ,
where P ′ is as above. Since z occurs once in P and all other cells of P are
empty, P in this case avoids at least one of the following:

c c′ c′′

z x y w

w y z x

x z w y

y w x z

or

c c′ c′′

z y x w

w z y x

x w z y

y x w z

Case B1(b): The case where (3, c′′, z) ∈ P but (4, c′′, y) 6∈ P is similar.
Case B1(c): Next suppose that (3, c′′, z) and (4, c′′, y) are both in P . In
this, letting c = 1, c′ = 2 and c′′ = 3, P is avoided by

c c′ c′′

y x z w

w z y x

z w x y

x y w z

.

Case B1(d): Neither (3, c′′, z) nor (4, c′′, y) is in P . Then, since we are
assuming there are at most two symbols in rows 1 and 2, letting c = 1,
c′ = 2, c′′ = 3, P is avoided by

c c′ c′′

z y x w

y z w x

x w z y

w x y z

.

Case B2: Next suppose that there is a column c 6= 4 such that (1, c, x) ∈ P
but no column c′ 6∈ {4, c} such that (2, c′, w) ∈ P . Then we have two choices
for a column c′′ 6= c such that (1, c′′, x), (2, c′′, w) ∈ L, avoiding P . Since
there is at most one other symbol in rows 1 and 2 of P , we can complete
the first two rows of L, avoiding P in the process. If there is also a choice
of c′′ for which neither (3, c′′, z) ∈ P nor (4, c′′, y) ∈ P , then it is not hard
to see that L can be completed to avoid P . If there is no such choice for c′′,
then P contains (with a possible reordering of the columns):
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x w

x

z y

y z

which is avoided by either

y z x w

z w y x

w x z y

x y w z

or

z y x w

w z y x

x w z y

y x w z

.

Case B3: Similarly we can do the case when there is a column c 6= 4 such
that (2, c, w) ∈ P but there is no column c′ 6∈ {4, c} such that (1, c′, x) ∈ P .
Case B4: Henceforth we may assume that x is not in row 1 of P and that
w is not in row 2 of P . We then have three choices for c 6= 4 so that
(1, c, x), (2, c, w) ∈ L, avoiding P .

We wish to fill the rest of rows 1 and 2 of L with symbols y and z. It
is possible that y and z form a partial transversal in rows 1 and 2 of P .
This may rule out one of our choices of c. However in this case y and z do
not occur in rows 3 and 4 of P , so we can have (3, c, z), (4, c, y) ∈ L for any
choice of c. Moreover a partial transversal of w and x in rows 3 and 4 of L
rule out at most one more choice of c, so we can construct an L that avoids
P . Otherwise symbols y and z do not form a partial transversal in rows 1
and 2 of P . In this case the only obstructions to our choice of c occur in rows
3 and 4 of P . These potential obstructions are: (1) (3, c′, z) ∈ P for some
c′, (2) (4, c′′, y) ∈ P for some c′′ and (3) there is a partial transversal with
x and w. Each of these scenarios rules out at most one choice for column
c, so we are done unless all three obstructions occur simultaneously. In this
case rows 3 and 4 of P each contain 2 symbols and rows 1 and 2 of P are
empty. Here we repeat the above analysis on rows 1 and 3 rather than rows
1 and 2.

Lemma 2.4. Let P1 and P2 be two 4 × 4 arrays, on any symbol set, that
coincide in the last (fourth) column. Suppose that in each of P1 and P2 no
symbol is repeated in any row or column, except possibly in the last column,
but that the last column is not completely filled with one single symbol.

Then there are at most R ≤ 2 · 38 = 76 4-sets of symbols that are
unsuitable for producing two 4 × 4 Latin squares L1 and L2 that coincide
with each other in the last column and avoid P1 and P2, respectively.
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Proof. We will show that by excluding at most 38 distinct 4-sets {w, x, y, z} ⊂
[n] we can guarantee that for any remaining 4-set {w, x, y, z} ⊂ [n], the
first three columns of P1 contain either: (1) at most three symbols from
{w, x, y, z}, or (2) each symbol from {w, x, y, z} at most once. Applying the
same process to P2, the result then follows from the previous lemma.

We first exclude the (at most) three 4-sets that are the sets of symbols
used in each of the first three columns of P1. This guarantees that each
column of P1 has a cell containing an symbol not from {w, x, y, z}, for any
remaining such 4-set. Since we are hoping to make L1 avoid P1, we label
cells of P1 that contain symbols not from {w, x, y, z} as being “empty”.
Thus each column of P1 now has at least one “empty” cell, and there are
at most nine non-empty cells in the first three columns of P1.

If these nine cells together contain at most three distinct symbols we
have case (1) and are done. If the nine cells contain between four and seven
distinct symbols, we can exclude the 4-sets (at most thirty-five) derived
from these symbols (making a total of thirty-eight, and have case (1). If the
nine cells each contain different symbols, then no matter what our choice of
{w, x, y, z}, each symbol from this 4-set occurs at most once, which is case
(2). Otherwise the nine cells contain seven symbols exactly once and one
symbol e that occurs twice. Since 7!/(3!4!) = 35, we can exclude all 4-sets
that contain the symbol e together with any three out of the seven other
symbols. This implies either (1) or (2) above. So the lemma is proven.

The excluded case n = 3 in the following lemma, the statement of which
which can be found in [3], and with a non-constructive proof in [2], is what
makes 4m − 1 a problem for m = 3 in the main theorem.

Lemma 2.5. For any n 6= 3 there exists an n × n Latin square on symbols
1, 2, . . . , n which has symbol n in each main diagonal cell and has the symbols
of the last column in the same order as the symbols in the last row, namely
1, 2, . . . , n.

Proof. In brief, set symbol n on the main diagonal, symbol n−1 right below
the diagonal, except for cell (n−1, n−3), and in cells (n−1, n) and (1, n−3).
Next, fill the top left (n−2)× (n−2) subsquare by filling top-right to lower-
left diagonals with single symbols, such that the diagonal containing cell
(i, i) is filled with symbol i, for 1 ≤ i ≤ n − 3. Then we will be free to
use symbol i in cells (i, n) and (i, n). A closer inspection shows that row
n − 1 and column n − 1 can also be completed. An example, where n = 7
follows below. It should be clear why this construction fails for n = 3, and
for n ≤ 2, there clearly exists a Latin square with the required property.
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7 6

6 7 1

6 7 1

6 7

1 6 7

7 6

6 7

→

7 4 2 5 6 3 1

6 7 5 3 1 4 2

2 6 7 1 4 5 3

5 3 6 7 2 1 4

3 1 4 6 7 2 5

4 5 1 2 3 7 6

1 2 3 4 5 6 7

3 The main theorem

Theorem 3.1. For n ≥ 4, any n × n partial Latin square P is avoidable.

Proof. By Theorem 1.1 and Theorem 1.2 we may assume that n = 4m − 1
for m ≥ 2. Cases m = 2 and m = 3 are handled separately in later sections.
We therefore also assume that m ≥ 4.

If P is completable it is also avoidable, which can easily be seen by
simply applying a permutation of the symbols without fixed points. We
may therefore assume that there is an empty cell, and by permuting rows
and columns we may assume that the cell (4m − 1, 4m − 1) is empty. We
also assume, without loss of generality, that symbol 4m does not occur in
P .

Let P ′ be a 4m × 4m partial Latin square with empty last row and col-
umn, coinciding with P in the first 4m − 1 rows and columns. We shall
produce a Latin square L′ on symbol set [4m] such that L′ avoids P ′. More-
over, for each i ∈ [4m], we will ensure that the following conditions hold:

1. symbol 4m is on the main diagonal of L′ and

2. there exists a symbol ei such that (i, 4m, ei), (4m, i, ei) ∈ L′ but (i, i, ei) 6∈
P ′.

If such a Latin square L′ exists, then we create a Latin square L by deleting
the last row and column of L′ and replacing symbol 4m with ei in each cell
(i, i). Such a latin square L will clearly avoid P .

Since m 6= 3, by Lemma 2.5 there exists a Latin square Q on symbol
set [m] such that symbol m appears only on the main diagonal, and the
symbols in the last row and column appear in the same order: 1, 2, . . . ,m.
Let S = {Si | 1 ≤ i ≤ m}, be a partition of [4m] into m pairwise disjoint
4-sets. We will construct L by replacing each element (i, j, k) ∈ Q with a
4 × 4 Latin square (denoted by L(i, j)) on symbol set Sk.

9



a b c

d e f

g h

Figure 2: The configuration in P (m,m)

Let P (i, j) be the 4×4 subarray of P ′ that occupies the same set of cells as
L(i, j). In order to ensure that each L(i, j) avoids the corresponding P (i, j),
not all possible partitions S will be suitable. We exclude a certain number
of partitions, showing ultimately that at least one partition is suitable when
m ≥ 4.

Our first specification is that symbol 4m ∈ Sm. The number of such
partitions S is equal to (4m− 1)!/((4!)m−13!). Next, for any (i, j) such that
i 6= j and i, j < m, there will be no unsuitable 4-set, because any 4 × 4
partial Latin square is avoidable using any symbol set, by Theorem 1.1.

Now consider L(m,m). The structure to be avoided will look like the
array in Figure 2, where some of the symbols may be equal.

Let P (m,m)∗ be the partial Latin square of order 3 formed by removing
the final row and column of P (m,m). We first attempt to form a Latin
square L(m,m)∗ of order 3 on symbol set Sm which avoids P (m,m)∗. From
Lemma 2.1, there is at most one set T for which this is not possible. We
specify Sm 6= T ∪ {m}, thereby ruling out at most (4m−4)!

(4!)m−1 partitions.

Thus such a Latin square L(m,m)∗ exists. Next, permute the rows
and columns of P ′ (and the corresponding rows and columns of L(m,m)∗)
so that the main diagonal of L(m,m)∗ is a transversal. Finally, construct
L(m,m) by replacing each symbol on the main diagonal of L(m,m)∗ with
4m, “pushing” the old symbols to the final row and column of L(m,m).
Such a Latin square clearly avoids P (m,m), as well as satisfying Conditions
1 and 2 above.

Finally we must construct L(i, i), L(i,m) and L(m, i) for each i < m.
First, fix i. Construct a Latin square L(i, i) on symbol set Sm that avoids
P (i, i). Next, rearrange the row and columns of P ′ (and the corresponding
rows and columns of L(i, i)) so that the symbol 4m occurs on the main
diagonal of L(i, i). By Lemma 2.2 (with x = 4m, P = P (i, i) and L =
L(i, i)), we may also assume that among the symbols in P (i, i) that L(i, i)
avoids on its main diagonal, there are either at least two distinct symbols,
or only symbols used in L(i, i).
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We then wish to construct L(i,m) and L(m, i) that respectively avoid
P (i,m) and P (m, i) and satisfy Condition 2 above. To do this, let P (i,m)∗

and P (m, i)∗ be the arrays (possibly not partial Latin squares) formed by
“pushing” the elements on the main diagonal of P (i, i) to the final row
of P (m, i) and the final column of P (i,m). From above, the final row of
P (m, i)∗ and the final column of P (i,m)∗ each contain either 0 or at least
two distinct symbols from Si.

Therefore, by Lemma 2.4, ruling out at most R ≤ 76 choices for Si, there
exist Latin squares L(m, i) and L(i,m) which avoid P (m, i)∗ and P (i,m)∗,
respectively. (Note that we consider the transposes of L(m, i) and P (m, i)∗

when applying Lemma 2.4.) Moreover, the symbols in the last row of L(m, i)
correspond to the symbols in the last column of L(m, i), and these symbols
in turn avoid the main diagonal of P (i, i), thus satisfying Condition 2.

By disallowing these R choices for each Si, we rule out at most R(m−1)(4m−5)!
(4!)m−23!

partitions of the symbol set. Thus, the number N of suitable partitions of
the symbol set into 4-sets satisfies

N ≥ (4m−1)!
(4!)m−13!

− (4m−1)!
(4!)m−1 − R(m−1)(4m−5)!

(4!)m−23!

= (4m−4)!
(4!)m−1

[

(4m−1)(4m−2)(4m−3)−6−6R

6

]

.

Using exclusion/inclusion, these calculations could be improved upon,
but this simple calculation will suffice for our purposes. In order for this to be
strictly greater than 0, we need 0 < (4m−1)(4m−2)(4m−3)−6−6R which,
for R ≤ 76, at least holds for any m ≥ 4, and the theorem is proved.

4 The case n = 7

When proving Lemma 2.4, we excluded a larger number of 4-sets than we
had a mandate for when m = 2, so we need to handle this case separately.

Theorem 4.1. Any 7 × 7 partial Latin square is avoidable.

Proof. Let P be a partial Latin square of order 7, on the symbols a, b, . . . , g.
We will begin by partitioning L into four parts, P1 through P4. We set P1
to be the top left 3×3 square, P2 the top right 3×4 partial Latin rectangle
(three rows, four columns), P3 the lower left 4 × 3 partial Latin rectangle
and P4 the lower right 4×4 partial Latin square. We will find configurations
Q1 to Q4 avoiding these parts that fit together to form a Latin square Q
that avoids P .
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Choose a symbol a occurring a maximal number of times and permute
rows and columns so that P2 and P3 contain no a, but P1 contain either all
a:s (if there are three or less of them) or three a:s (if there are four or more
of them). Choose a triple of symbols {b, c, d} 63 a. We can use this triple to
form a 3 × 3 Latin square Q1 that avoids P1, by Lemma 2.1.

Next we introduce a dummy symbol x that does not occur anywhere.
We use symbols {b, c, d, x} to create a 4×4 Latin square Q4′ that avoids P4,
which is possible by Theorem 1.1. We now wish to exchange the x:s for the
quadruple {a, e, f, g}, each used exactly once. The only possible problem we
may run into is if the four x:s should cover exactly one of these symbols four
times. By Lemma 2.2 we can avoid this situation. Hence we can produce
an array Q4 that avoids P4 and that looks like a 4 × 4 Latin square on
symbols {x, b, c, d}, with the modification that the x has been exchanged for
a transversal on symbols a, e, f and g.

It remains to produce a Q2 that avoids P2 and a Q3 that avoids P3,
but these two procedures are practically identical, and independent, so we
shall only construct Q2. We will use symbols a, e, f and g, taking care not
to run into conflict with the occurrences of these symbols that are already
present in Q4. To do this, we reformulate the problem slightly: Avoid a
4 × 4 partial Latin square L4 (with its first three rows given by P2), with
the extra requirement that the last row in the avoiding Latin square, Q2′, is
prescribed. The prescribed last row models the restrictions inherited from
the cells where x was used in Q4, and the successful production of Q2′

follows from Lemma 2.3, since the symbol a does not occur in P2. Q2 is
simply Q2′, with the last row removed. The arrays Q1 to Q4 fit together as
a Latin square, that avoids P .

5 The case n = 11

The case m = 1 of Theorem 3.1 cannot be salvaged, as there is an example
of a 3× 3 partial Latin square that is not avoidable. When m = 3, however,
Lemma 2.5 also fails, and this is the case n = 4m − 1 = 11. We therefore
cannot augment an 11× 11 partial Latin square P with an extra empty row
and column, partition the resulting structure P ′ into 4 × 4 subsquares and
follow the scheme of Theorem 3.1. Instead, we shall partition P into four
6 × 6 subarrays and follow the same scheme as Theorem 4.1. We shall need
an additional lemma, mirroring Lemma 2.3.

Lemma 5.1. Let P be a 6×6 partial Latin square on the symbols 2, 3, . . . , 6.
Let L0 be a 6 × 6 array with symbols 1, 2, . . . , 6 in its last column in that
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order, and suppose that L0 does not coincide with P in any cell. Then L0

can be completed to a 6 × 6 Latin square L that avoids P .

Proof. We will partition the symbol set into two suitable 3-sets, S1 (contain-
ing symbol 1) and S2. Let R1 (R2) be the set of rows containing symbols
from S1 (S2) in the final column of L0. We partition P into four 3 × 3
subarrays P1 (the intersection of rows R1 with columns 1, 2 and 3), P2 (the
intersection of rows R1 with columns 4, 5 and 6), P3 (the intersection of
rows R2 with columns 4, 5 and 6) and P4, (the remaining cells). we will
then use S2 to avoid P1 and P4, while S1 is used to avoid P2 and P3.

Note that since P already avoids the final column of L0, we can hence-
forth ignore the final column of P . We first observe that, by Lemma 2.1, S1

can always be used to avoid P3, since symbol 1 ∈ S1 does not occur at all
in P .

We next observe that using S2 = {4, 5, 6} to avoid P1 might pose a
problem, if P1 contains the one non-avoidable 3 × 3 partial Latin square
on symbols S2. If this is the case, we may assume that column 1 contains
symbols 4, 5, 6 in rows 1, 2 and 3. We permute the columns of P to bring
columns 1 and 2 into columns 4 and 5. Then P1 will contain at most 4
occurrences of 4, 5 and 6, and will thus be avoidable. In this case P2 will be
avoidable, for it will contain at most one occurrence of any of 2 or 3, and
finally, P4 will be avoidable, for there will be at most one of symbols 4, 5
and 6 occurring at most once there. P3 stays avoidable, as observed above.

We may thus assume that P1 and P3 are avoidable, and concentrate
on P2 and P4. The approach will be a guided case analysis. The possible
(minimal) obstructions fall under one of two types, as shown below, where
{x, y, z} = S1 or S2.

y x

z y

z

x

z y

y z

We will assume that columns 4 and 5 of P are maximal, that is, we will
assume it is impossible to add a symbol to any empty cell in these columns
of P without repeating a symbol within a row or column (ignoring columns
1, 2, 3 and 6). This is a legitimate assumption as every case will be the
subset of some maximal situation. We may thus assume that there is a row
other than row 1 containing at least 2 symbols in columns 4 and 5, and
without loss of generality we may assume that row 6 contains symbols 2 in
column 4 and symbol 3 in column 5.
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We ask now if 123, 456 (omitting curly brackets) is a suitable partition
of the symbols. The possible obstructions are situated either in P2 or P4,
and up to isotopism they are one of a. b. or c. below. Similarly to the proof
of Lemma 2.3, we can specify the following cells of P in columns {4, 5},
where column 6, separated by a double line, shows symbols in L. (Since any
symbol e in column 6 of L avoids the corresponding symbol in P , we can
ignore any occurrences of e within the same row of P . We thus may think
of the final column in these diagrams as denoting a prohibited symbol for
each row of P .)

a.

3 1

2

2 3

b.

5 4

4 5

2 3 6

c.

6 4

4 5

2 3 6

We treat case a. first. Is 124,356 a suitable partition? Yes, unless we
have one of the following:

a.i.

2 3

6 5

2 3 6

a.ii.

5 2 3

5

2 3 6

In case a.i. 125,346 is a suitable partition unless (3, 4, 4) ∈ P . Then
134,256 is a suitable partition unless (2, 5, 5) ∈ P . Then 135,246 is a suitable
partition unless (4, 5, 6) ∈ P , in which case 136,245 is a suitable partition.

In case a.ii. 125,346 is a suitable partition unless (4, 4, 6) ∈ P . Then
135,246 is a suitable partition unless (2, 5, 4) ∈ P . Then 134,256 is a suitable
partition unless (5, 5, 6) ∈ P , in which case 136,245 is a suitable partition.

In case b. we ask if 146,235 is a suitable partition. The answer is yes,
unless we have one of the following configurations.

b.i.

5 2

2 3

4 5

b.ii.

2

5 3

3 4 5

b.iii.

6 2

4 3

2 3 5

In case b.i. 135,246 is a suitable partition. In case b.ii. 156,234 is a
suitable partition unless (2, 4, 4) ∈ P and (3, 5, 2) ∈ P . Then 125,346 is a
suitable partition unless (4, 4, 6) ∈ P , in which case 256,134 is a suitable
partition. In case b.iii. 156,234 is a suitable partition unless (3, 4, 4) ∈
P . Then 146,235 is a suitable partition unless (4, 4, 6) ∈ P , in which case
134,256.

In case c. we ask if 156,234 is a suitable partition. The answer is yes,
unless we have one of the following configurations.
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c.i.

2

2 3

3 6 4

c.ii.

3 2

4 3

6 4

c.iii.

4 2

3

3 6 4

In case c.i. 126,345 is a suitable partition unless (2, 4, 6) ∈ P , in which
case 146,235 is a suitable partition. In case c.ii. 124,356 is a suitable par-
tition, unless (3, 4, 5) ∈ P , in which case 125,346 is a suitable partition. In
case c.iii. 124,356 is a suitable partition unless (3, 4, 5) ∈ P , in which case
126,345 is a suitable partition.

We can thus find a suitable partition of the symbol set, and this concludes
the proof.

Theorem 5.2. Any 11 × 11 partial Latin square P is avoidable.

Proof. Let P be a partial Latin square of order 11 on the symbols 1, . . . , 11.
We will begin by partitioning L into four parts, P1 through P4. We set
P1 to be the top left 5 × 5 square, P2 the top right 5 × 6 Latin rectangle
(five rows, six columns), P3 the lower left 6× 5 Latin rectangle and P4 the
lower right 6× 6 partial Latin square. We will find configurations Q1 to Q4
avoiding these parts, that fit together to form a Latin square Q that avoids
P .

Choose a symbol, 1, in P and permute rows and columns of P so that 1
does not occur in P2 and P3.

Choose a 5-set of symbols, 7, . . . , 11. We can use this 5-set to form
a 5 × 5 Latin square Q1 that avoids P1, (see [1]). Next we introduce a
dummy symbol x that does not occur anywhere. We use symbols x, 7, . . . , 11
to create a 6 × 6 Latin square Q4′ that avoids P4, which is possible by
Theorem 1.1. We now wish to exchange the x:s for the 6-set 1, . . . , 6, each
used exactly once. The only possible problem we may run into is if the six
x:s should cover exactly one of these symbols six times. By Lemma 2.2 it
is possible to avoid this. Hence we can produce an array Q4 that avoids
P4 and looks like a 6 × 6 Latin square on symbols x, 7, . . . , 11, with the
modification that the x has been exchanged for a transversal on symbols
1, . . . , 6.

It remains to produce a Q2 that avoids P2 and a Q3 that avoids P3,
but these two procedures are practically identical (under transpose), and
independent, so we shall only construct Q2. We will use symbols 1, . . . , 6,
taking care not to run into conflict with the occurrences of these symbols that
are already present in Q4. To do this, we reformulate the problem slightly:
Avoid a 6 × 6 partial Latin square L6 (with its first five rows given by P2),
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with the extra requirement that the last row in the avoiding Latin square,
Q2′, is prescribed. The prescribed last row models the restrictions inherited
from the cells where x was used in Q4, and the successful production of Q2′

follows from the proof of Lemma 5.1, since the symbol 1 does not occur in
P2. Q2 is simply Q2′, with the last row removed.

The arrays Q1 to Q4 fit together as a Latin square that avoids P .
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