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Abstract. We investigate the question of when it is possible to produce an n×n Latin
square that abides by two types of specifications: The prescription that a certain symbol
be used in a certain cell, and the restriction that a certain symbol must not be used in
a certain cell. When only one or two symbols are involved in the specifications, we solve
the problem completely.

1. Introduction

An array A, for our purposes, is a rectangular arrangement of symbols, {aij}i,j , with the
possibility of discerning distinct symbols. Rows are indexed by i and columns by j, and if
1 ≤ i ≤ m and 1 ≤ j ≤ n we say that A is an m× n array. In what follows, we shall only
consider square arrays, i.e. where m = n. When there is talk of ‘subarrays’, the object in
question is the set of cells that is the intersection of a selection of rows and a selection of
columns. Any subarray can thus, by suitable permutations of the rows and columns, be
brought together into an r × s connected rectangle of cells, even though the original cells
may be scattered around the whole initial array.
Two arrays are isotopic if one can be transformed into the other by suitable permuta-

tions of the rows, the columns and/or the symbols. In somewhat non-standard termin-
ology, we shall say that two arrays are isomorphic if they are either isotopic, or by ex-
changing the role of rows and columns in one of them, they become isotopic. In geometric
terms, what differs between isomorphy and isotopy is the possibility to reflect along the
main diagonal. Obviously, two isotopic arrays are isomorphic, and these relations are
equivalence relations. All results in this paper are up to isomorphism.
An n × n array is avoidable if for each set of n symbols there is a Latin square on

these symbols which differs from the array in every cell. The question of which n × n
arrays are avoidable was posed by Häggkvist in 1989 [6]. Further results of Chetwynd and
Rhodes [3], Cavenagh [1] and Cavenagh and the present author [2], established that there
are unavoidable partial Latin squares of orders 2 and 3, and that all partial Latin squares
of order at least 4 are avoidable. An attempt at classifying all unavoidable arrays was
undertaken by Markström and the present author in [7].
The question of which partial Latin squares are completable is well studied, but it seems

natural to consider the possibility of there being both prescribed and forbidden symbols.
To the present author’s knowledge, these are the first stumbling steps on this path of
investigation. An array that defines specifications which can not be met we shall call
unabiding, the opposite of which, of course, is abiding. A Latin square L abides by A if it
has all the prescribed symbols where they should be, and no symbols where they shouldn’t
be, according to the specifications codified in A.
A moment’s reflection gives that it is uninteresting to allow multiple prescribed symbols

in any cell, for this would immediately render the array unabiding. Likewise, forbidding
the use of some symbol in a cell where some other symbol has already been prescribed is
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superfluous, and if we should forbid the use of a symbol in a cell where we have already
prescribed it, the array is trivially unabiding. It is, however, meaningful to allow multiple
forbidden symbols in any given cell. This line of investigation has been pursued in [4] and
[5], but we introduce here the new element of additional prescribed symbols.

2. Arrays with one distinct symbol

Any partial Latin square on one symbol is completable; the diagonal on the only symbol
can trivially be completed, and by König’s colouring theorem, any partial Latin square
consisting of a number of complete diagonals is completable. Characterizing the unavoid-
able arrays on one symbol is simply a matter of applying Hall’s theorem on distinct
representatives. We quote from [7]:

Proposition 2.1. An array A on one symbol that holds an r × (n − r + 1) rectangular
subarray totally filled with that single symbol is unavoidable.

Further, any unavoidable n × n array using only one symbol has, for some 1 ≤ r ≤ n,
an r × (n− r + 1) rectangular subarray totally filled with that single symbol.

We shall use the letter B for the active symbol, B where it is forbidden, and b where it is
prescribed. As observed above, if a b and a B occupy the same cell, the array is unabiding,
and if the b:s do not form a partial Latin square, or the condition from Proposition 2.1 on
the placement of the B:s is violated, again the array is unabiding.
We will also find reason to make reference to the following lemmata, likewise from [7],

which state when an avoidable array with only one distinct forbidden symbol forces the
use of this symbol in a specific cell.

Lemma 2.2. Let A be an n×n avoidable array on the symbol B. Suppose that any Latin
square that avoids A must use the symbol b in each of the cells in the set S. Then for each
cell c ∈ S, A contains, for some r, an r × (n − r + 1) rectangular subarray that covers c
and is totally filled with the symbol B, except for cell c, which is empty.

Lemma 2.3. Let A be an n×n avoidable array on the symbol B. Suppose that any Latin
square that avoids A must use the symbol b in at least one of the cells in the set of cells S.
Then there is a nonempty subset T ⊂ S, such that A contains an r×(n−r+1) rectangular
subarray that covers T and is totally filled with the symbol B, except for cells in T , which
are empty.

In what follows, we will often consider only certain parts of an array, where all the
action is. For instance, we know immediately that any row or column where there is a
prescribed b will hold no further b:s. When attempting to complete a partial diagonal
on b, we need therefore only consider what happens in the subarray obtained from A by
removing any row or column containing b. The following definition is therefore useful.

Definition 2.4. We denote by Ab the subarray obtained from A by removing all rows
and columns containing the symbol b. By A

¬b we denote the subarray obtained from A
by removing all rows and columns not containing b.

When considering arrays with more than one kind of symbol, Lemma 2.2 is not quite
enough. We therefore prove the following extension of it.

Lemma 2.5. Let k denote the number of b:s in the n × n abiding array A on symbols
b and B. A forces the use of the symbol b in a cell c iff Ab contains, for some r, an
r × ((n − k)− r + 1) subarray A0 ∋ c completely filled with B, except for cell c, which is
empty.
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Proof. We need only consider Ab, for no further b will be placed outside of Ab. Since there
are k b:s in all, Ab is an (n− k)× (n− k) subarray, and by Lemma 2.2, we are forced to
place a b in c ∈ Ab iff for some r there is an r × ((n− k)− r + 1) subarray A0 in Ab such
that Ab \ {c} is filled with B:s. �

We now present the characterisation of unabiding arrays on one symbol.

Theorem 2.6. An array A using the symbol B for forbidding the use of symbol b in a
cell and the symbol b for prescribing the use in a cell is abiding iff no B and b occupy a
common cell, the b:s form a partial Latin square, and the subsquare Ab does not for any r
contain an r × ((n− k)− r + 1) rectangular subarray completely filled with the symbol B,
where k is the number of b:s in A.

Proof. Necessity. We must show that if any one of the conditions are violated, then A is
unabiding. If a b and a B should occupy a common cell, A is obviously unabiding. Also, if
the b:s do not in themselves form a partial Latin square, we have no hope of constructing a
Latin square that abides by A. Further, if the (n−k)× (n−k) subsquare Ab, in which we
must complete the partial diagonal specified by the b:s, holds a subrectangle as specified
in the present proposition, then Proposition 2.1 clearly states that this can not be done,
and hence A is unabiding.
Sufficiency. The prescribed b:s form a partial Latin square, that does not in itself constitute
a breach against any B. Rather, they form a partial diagonal T . In the array Ab as defined
above, we can find another partial diagonal T0 by Proposition 2.1, since there is no ‘large’
rectangle of B:s in Ab. T and T0 together form a complete diagonal, and completing this to
a full Latin square is trivial, as there are no specifications for the rest of the symbols. �

b

B B
B B

b
b

B B

Figure 1. Examples of unabiding arrays on one symbol

3. Arrays with two distinct symbols

As noted in the previous section, an array with two complete, non-intersecting diagonals on
symbols b and d respectively is always completable. Unavoidable arrays with two distinct
forbidden symbols were completely characterised in [7]:

Theorem 3.1. Let A be an n × n unavoidable array with two distinct symbols, b and d,
that does not constitute an unavoidable array when either symbol is completely removed.

Then A contains one r× (n− r+1) array Rb and one (n− r+1)× r array Rd as follows:
Rb and Rd intersect in a single cell c which is empty, and the rest of Ri is filled with the
symbol i for i = b, d.

If A contains subarrays as described in the theorem, then A is unavoidable, since in cell
c both the symbol b and the symbol d is forced, so the theorem is in effect ‘if-and-only-
if’. Note that Theorem 3.1 does not allow multiple entries in any cell. That situation
seems considerably more complicated. In what follows we shall likewise restrict ourselves
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to arrays with no two forbidden symbols in any cell, so each cell will hold at most one
specification.
Before we go for greater generality, we will investigate what happens when the symbols

only appear as prescriptions and/or restrictions. We shall start with the case when the
two symbols are only prescribed.

Proposition 3.2. Let A be an n × n array with symbols b and d prescribed, in disjoint
sets of cells. Then A is completable iff both the b:s and d:s form partial Latin squares, and
the following does not hold:

A contains a partial diagonal T of length n−1 in one of the symbols, say b, together with
one or both of the following, where c is the cell that would complete T to a full diagonal:

(I). Cell c contains a d.
(II). A

¬b contains an (n− 1) diagonal Td filled with d:s.

Proof. Necessity. If the b:s or d:s do not form partial Latin squares, we have no hope of
completing A. In both case (I) and case (II), the b:s force the use of a b in cell c. In case
(I), the cell is already occupied, and in case (II), the d:s in Td force the use of a d in cell c.
Sufficiency. Suppose first that the neither the number of b:s nor c:s is n− 1. If any of the
two diagonals should already be complete, we are happy. Suppose that the number of b:s
is strictly less than n−1. Then Ab is at least 2×2, and since there is at most one d in any
row or column, it can be completed. The same argument holds for d, so we are finished
in this case.
Now suppose we have exactly n− 1 b:s. Since (I) does not hold, the partial diagonal on

b can be completed. If the number of d:s is not exactly n− 1, we are finished, for then we
can complete the diagonal on d if it is not already complete.
If the number of d:s should happen to be n − 1, and we cannot complete the diagonal

they form, we see by switching names on b and d that we have either case (I) or case (II),
and we are finished. �

b d
b d

d b

b
b d
d b
d b

Figure 2. Examples of unabiding arrays on symbols b and d

Next, we treat the case where one symbol is prescribed, and the other forbidden. Note
that this proposition properly contains Proposition 2.1.

Proposition 3.3. Let A be an n×n array with symbols b and D prescribed and forbidden,
respectively, in disjoint sets of cells. Then A is abiding iff the b:s form a partial Latin
square, and none of the following holds:

(I). For some r, the union of the set of cells containing D:s and the set of cells con-
taining b:s contains an r × (n− r + 1) subarray of A.

(II). There are n − 1 b:s and for some r, the set of cells containing D:s and the set
of cells containing b:s together with the cell c = Ab, contains an r × (n − r + 1)
subarray.

Proof. Necessity. Trivially, if the b:s do not form a partial Latin square, then A is un-
abiding. Further, if (I) holds, then by Proposition 2.1, we can find no place to put a
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full diagonal of d:s. If (II) holds, we must place a b in cell c, and subsequently, again by
Proposition 2.1, we will not find place enough for a full diagonal of d:s.
Sufficiency. Suppose the b:s form a partial Latin square, and that none of (I) and (II)
holds. If there are exactly n b:s, they form a full diagonal, and since (I) does not hold,
by Proposition 2.1, we can also find space enough for a full diagonal of d:s, and we are
finished. If there are exactly n − 1 b:s, then we complete this partial diagonal to a full
diagonal in the only possible way (namely filling cell c with a b), and since (II) does not
hold, there is still room for a diagonal of d:s. Finally, if there are at most n− 2 b:s present
in the partial diagonal Tb, we shall start by choosing a diagonal in which to put d:s, which
is possible by Proposition 2.1, since (I) does not hold. We must still complete the partial
diagonal on b, so we investigate the subarray Ab, which is at least 2 × 2. In Ab, at most
one cell in each row and column now holds a d, so we can find an empty diagonal T0 in
which to put b:s, that together with Tb forms a full diagonal on b, and we are finished. �

b D D
D b D

b
b
D b D
D D

Figure 3. Examples of unabiding arrays on b and D

We now investigate the case when one symbol, say D, takes both roles (prescription
and restriction) and the other symbol B takes only the prescriptive role. If the number of
either of these should be zero, we refer back to Theorem 2.6 or the previous propositions
in this section.

Theorem 3.4. Let A be an array on symbols b, d and D, that is abiding when any one
of these symbols is disregarded in its entirety. Let k be the number of d:s in A. Then A is
abiding iff none of the following holds:

(I). There are (n− 1) b:s, and for some r, Ad contains an r × ((n− k)− r + 1) array
A0 ∋ c = Ab completely filled with D:s and b:s, except for cell c which is empty.

(II). Ad contains, for some r, an r× ((n−k)− r+1) subarray A0 completely filled with
D:s and b:s.

Proof. Necessity. If case (I) occurs, we see by Lemma 2.5 that we will have to place a d in
cell c, but clearly, we would also have to place a b there. If case (II) occurs, there is not
enough room for a diagonal of d:s, again by Lemma 2.5.
Sufficiency. If there are exactly n b:s, they form a full diagonal, and consequently, we
only have to worry about completing the diagonal on d. In doing this, we treat any b as
a position where we are forbidden to place a d. Therefore, by Theorem 2.6 A is abiding if
case (II) does not occur.
If there are strictly less than (n− 2) b:s, then we may always complete the diagonal on

b after completing the diagonal on d, so again, we need only worry about completing the
diagonal on d. By Proposition 2.6 this is possible if (II) does not occur.
Finally, if there are exactly (n − 1) b:s, it may happen that we are forced to place a d

in cell c = Ab, creating an unresolvable conflict. By Lemma 2.5, this will happen iff case
(I) occurs. Ensuring that the diagonal on d is completable, amounts to making sure that
case (II) does not occur. �
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b

d B
B d

b d
b
b D
D

Figure 4. Examples of unabiding arrays on symbols b, d and D.

The following theorem, which concludes the characterisation of unabiding arrays on two
symbols, presupposes that there are both B:s and D:s present. If either of them should
be missing, we resort instead to Theorem 3.4.

Theorem 3.5. Let A be an array on symbols b, B, d and D, that is abiding when any
one of these symbols is disregarded in its entirety. Let k be the number of b:s, and ℓ be
the number of d:s in A, where either of these number might be zero, whereas the number
of B:s and D:s are both nonzero. Then A is abiding iff the following does not hold:
For some r and s, there is in Ab ∩ Ad an empty cell c with the following properties:

There exists an r × ((n − k)− r + 1) subarray A0 ⊂ Ab that covers the cell c, the rest of
which is filled with B:s and d:s, and an s× ((n− ℓ)− s+1) subarray A1 ⊂ Ad that covers
the cell c, the rest of which is filled with D:s and b:s.

Proof. Necessity. If there indeed exists such a cell, we are forced to use both a b and a d
there, so A is unabiding.
Sufficiency. We assume that A is unabiding, and must show that there exists a cell c that
fulfills the conditions stated.
We begin with attempting to place a full diagonal of b:s. No D will affect the possibility

of doing this, and may therefore be disregarded. Since the number of D:s is non-zero and,
by assumption, A is abiding when all D:s are disregarded, it is possible to place a diagonal
of b:s.
We next try to complete the partial diagonal on d. This takes place in Ad. By Proposi-

tion 2.1 it is possible to complete the diagonal on d iff there for no t exists a t×((n−k)−t+1)
subarray in Ad where we are forbidden to place a d. There are two distinct reasons for
which we may be forbidden to place a d in a given cell. Either the cell holds a D, or
we there is a b in it, either present already in A, or placed there by us. We draw the
conclusion that for any possible diagonal Tb on b, there is a set of cells S ⊂ Ad ∩ Tb such
that S together with the D:s in Ad forms an r × ((n− k)− r + 1) subarray for some r.
If we fix a diagonal on b, no two cells of S lie in the same row or column, since it is

contained in a diagonal. Next, if |S∩Ab| ≥ 2 for some diagonal of b:s, we could reform the
diagonal so that we did not use b:s in the empty cells of an r× ((n−k)−r+1) rectangular
subarray otherwise filled with D:s. For |S| = 2 this procedure is illustrated in Figure 5.
We read “X/y” as X being forbidden, and y being used in that cell. ∅ indicates an empty
cell.

∅/b . . . D/∅
. . . . . .
D/∅ . . . ∅/b

→
∅/∅ . . . D/b
. . . . . .
D/b . . . ∅/∅

Figure 5. Reforming S
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We see therefore that there are single cells in Ab ∩ Ad, the union of which we name
Md, where the symbol d must be used. By reversing the roles of b and d in the above
argument, we find a set of cells Mb, in each of which we must use a b. We see then that
Mb, Md ⊂ Ab ∩Ad.
We claim that if A is unabiding, then Mb ∩Md 6= ∅. Then any cell c ∈Mb ∩Md fulfills

the conditions in the statement of the theorem.
Any diagonal on b intersects Md, and vice versa. Therefore, Mb ∪Md forms a partial

diagonal. By Lemma 2.3 there exists a non-empty set of cells T ⊂ Md such that there is
an r × ((n− k)− r + 1) subarray AT ⊂ Ab where AT \ T is filled with B:s and d:s.
If |T | = 1, we have that T ⊂ Mb. If it were the case that |T | ≥ 2, we would not be

forced to use d in the cells of T , contradicting the fact that T ⊂Md. To see why this is so,
we take, for example, the case |T | = 2. Figure 6 shows how the d:s claimed to be forced
in the two cells of T can be moved.

B/∅ . . . ∅/d
. . . . . .
∅/d . . . B/∅

→
B/d . . . ∅/∅
. . . . . .
∅/∅ . . . B/d

Figure 6. Reforming T

Thus |T | = 1 and therefore T ⊂Mb, so that T ⊂Mb ∩Md. �

b
D D
D B
B d

b d
b D
D B

Figure 7. Examples of unabiding arrays on two symbols

4. Concluding remarks

A natural extension of the present results would be to consider what happens when we
allow some cells to contain the entry {B,D}. This, however, seems to be considerably more
complicated. As an indication of this, we present in Figure 8 two examples of unabiding
arrays with entries from the set {B,D, {B,D}}, taken from [7].

B,D
B D
D B

B,D B,D
B,D B D

B,D D B

Figure 8. Examples of unabiding arrays with entries from {B,D, {B,D}}

Another obvious path of investigation is allowing three or more symbols to be involved
in the specifications, but again, this seems like a tough nut to crack. In Figure 9 two other
unabiding arrays from [7], this time with three distinct symbols, are presented to illustrate
the potentially rich flora of arrays in this category.
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B D E
E B
D B

B B D E
B B E D

D D
E E

Figure 9. Examples of unabiding arrays on three symbols
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