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The intricacy of avoiding arrays is 2
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Abstract

Let A be any n × n array on the symbols [n], with at most one symbol in each cell. An n × n Latin square L avoids A if all entries7
in L differ from the corresponding entries in A. If A is split into two arrays B and C in a special way, there are Latin squares LB and
LC avoiding B and C, respectively. In other words, the intricacy of avoiding arrays is 2, the number of arrays into which A has to9
be split.
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1. The theorem13

The concept of intricacy (for completing partial Latin squares) was introduced by Daykin and Häggkvist in [2],
and a sample of applications to other problems can be found in [3]. An array A is avoidable iff there is a Latin square L15
that differs from A in every cell. For the problem at hand, the intricacy is the natural number that answers the following
question: “If we want to split an array into avoidable arrays, what is the maximum number of arrays we need to use?”17
In [1] it is proven that this number is at most 3.

There are unavoidable arrays, for example any array containing a whole row or column of just one symbol, so the19
intricacy is not 1.

Theorem 1. The intricacy of avoiding arrays is 2.21

Proof. Let A be any n × n array on the symbols [n]. Split A into arrays B and C, so that C is empty. Certainly, there is
a Latin square LC avoiding C. For each cell in B, move the entry to array C iff it differs from the corresponding entry23
in LC . Then LC will still avoid C, and the entries left in B form a partial Latin square, which is completable (to LC ,
for instance). By Theorem 2.1 in [1] B is avoidable, and is avoided by some Latin square LB , which in fact is LC with25
symbols permuted without fixed points.
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