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Abstract. In the spirit of Ryser’s theorem, we prove sufficient con-
ditions on k, ℓ and m so that k × ℓ × m Latin boxes, i.e. partial
Latin cubes whose filled cells form a k× ℓ×m rectangular box, can
be extended to a k × n×m latin box, and also to a k × n× n latin
box, where n is the number of symbols used, and likewise the order
of the Latin cube.
We also prove a partial Evans type result for Latin cubes, namely

that any partial Latin cube of order n with at most n− 1 filled cells
is completable, given certain conditions on the spatial distribution of
the filled cells.

1. Introduction

Four central theorems in the theory of Latin squares are Hall’s theorem
on distinct representatives, as applied to the extension of Latin rectangles
to Latin squares [5], Ryser’s theorem [10], Smetaniuk’s theorem [11] and
Evans’ theorem on finite embeddability [4].
For higher dimensional Latin structures, Cruse [2] has shown that any

finite partial Latin hypercube can be embedded in a finite Latin hypercube,
which is an analogue of Evans’ theorem for arbitrary dimension, but the
bound that he obtains on the size of the Latin hypercube to embed in
is probably not best possible. We note that the main difference between
embedding and extending partial Latin structures, is that when embedding,
the partial stucture contains a given set of symbols, and the structure to
embed in introduces a (great) number of new symbols. In contrast to this,
extending presupposes that all active symbols may already be present in
the partial structure, and no new symbols are introduced in the extension.
For the three other theorems, no corresponding generalisations to higher

dimensions are known. In fact, some natural generalisations of the afore-
mentioned theorems do not hold. For example, a k×n×n partial Latin cube
may not be completable to a full Latin cube. When k = n− 1, completion
is always possible, as can easily be seen, but Kochol [7] produced examples
of incompletable k × n× n partial Latin cubes (PLC:s) for n2 < k ≤ n− 2.
Kochol also conjectured that any (n2 − 1) × n × n partial Latin cube is
completable.
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However, McKay and Wanless [9] have given examples of a 2 × 5 × 5
and a 2× 6× 6 incompletable partial Latin cube, thus disproving Kochol’s
conjecture. In general, therefore, there is no hope of completing even a
PLC consisting of two complete layers to a full Latin cube.
In the present paper we will, in the spirit of Ryser’s theorem, find con-

ditions for when certain k × ℓ × m PLC:s, namely Latin boxes, can be
extended to k × n×m Latin boxes, and subsequently, to k × n × n Latin
boxes. We can thus start with a block, extend it in one dimension, and
then extend in a second dimension, but we are not yet able to extend in
the third dimension.
We will also investigate the analogue of Smetaniuk’s theorem in three

dimensions, obtaining partial results.

2. Ryser’s theorem revisited

In what follows, we shall make use of the simple fact that a balanced
bipartite graph B on 2n vertices has a complete matching if δ(B) ≥ n

2 ,
and, in general, a t-factor if δ(B) ≥ n

2 + t− 1, where δ(B) is the minimum
degree of B.
A Latin cube of order n is a 3-dimensional n× n× n array on the sym-

bols [n], such that each symbol occurs exactly once in each 1-dimensional
subarray. We shall call a 1-dimensional subarray where only the first co-
ordinate changes a fiber, changing only the second coordinate gives us a
row, and the third coordinate a column. Keeping the first coordinate fixed
gives us a layer, where we will speak of layers with higher indices as being
above layers with lower indices. Fixing the second coordinate gives a slice.
A layer thus contains rows and columns and a slice contains columns and
fibers.
A k × ℓ×m partial Latin cube is a k × ℓ×m array on the symbols [n]

that satisfies the condition that each symbol be used at most once in each
fiber, row and column. A partial Latin cube may thus have empty cells. A
k × ℓ ×m Latin box is a k × ℓ ×m partial Latin cube where all cells are
filled. The set of symbols used is [n] unless stated otherwise.

Lemma 2.1. Let A be a k× ℓ×m Latin box. If m+2ℓ+2k− 4 ≤ n, then
A can be completed to a k × ℓ× n Latin box.

Proof. A consists of kℓ columns of length m, in k layers. Let Ci,j be the
j:th column in the i:th layer. Let the corresponding symbols used in these
columns be σi,j .
We form for each Ci,j a bipartite graph Gi,j with symbols [n] \ σi,j on

one side and rows m+ 1, . . . , n on the other side of the bipartition, where
an edge (r, s) is present if symbol s can be placed in row r without creating
a conflict. We complete columns C1,1, C1,2, . . . , C1,ℓ, C2,1, . . . , Ck,ℓ in this
order. Completing column Ci,j is equivalent to finding a complete matching
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in Gi,j . It holds that δ(Gi,j) ≥ n−m− (i− 1)− (j − 1), since we have to
take into account the symbols used in C1,j , . . . , Ci−1,j and Ci,1, . . . , Ci,j−1.
Since i ≤ k, j ≤ ℓ and m + 2ℓ + 2k − 4 ≤ n, it holds that δ(Gi) ≥

n−m
2 ,

so we can find a matching in Gi,j , and thus complete column Ci,j without
conflicts with C1,j , . . . , Ci−1,j and Ci,1, . . . , Ci,j−1. �

Corollary 2.2. Let A be a 2× 2×m Latin box. If m ≤ n− 4, then A can
be extended to a 2× 2× n Latin box.

Proof. Set k = 2, ℓ = 2 in Lemma 2.1. �

If m = n − 1 the corollary doesn’t hold, and likewise, if m = n − 2,
the corollary also doesn’t hold. A concrete example of the second fact is if
[n]\σ1,1 = {1, 2}, [n]\σ1,2 = {1, 3}, [n]\σ2,1 = {1, 2} and [n]\σ2,2 = {2, 3},
where σi,j is the set of symbols used in the column in the i:th layer, j:th
slice. Note that the Ryser condition is satisfied in every 2-dimensional
substructure.
If m = n − 3, the statement of the corollary does not follow from

Lemma 2.1, but is in fact true, which can be verified by a rather short
case analysis. In general, Lemma 2.1 is therefore not best possible.
Before we look at when a k × n ×m Latin box extends to a k × n × n

Latin box, we give an if-and-only-if condition on when a k × n × (n − 1)
Latin box extends to a k× n× n Latin box, in Proposition 2.3, and before
we go for full generality, we prove in Theorem 2.4 the special case k = 2,
m = 2, in the hope that the proof idea will be more transparent.

Proposition 2.3. A k× (n− 1)×n Latin box is extendable to a k×n×n
Latin box iff for each set of rows with shared third coordinate each symbol

is used at least k − 1 times.

Proof. Observe that each row in each of the k layers has n− 1 symbols out
of n, so the only possible sizes of their pairwise overlap are n−1 and n−2.
If in any two rows with the same first or third coordinate this overlap is

n−1, one and the same symbol would be forced in the last cell of these two
rows, creating a conflict. For rows in the same layer (i.e. with the same first
coordinate), this is impossible, since this would imply that some symbol is
used strictly less than n−1 times in that layer, but there are n(n−1) filled
cells in each layer, and thus each symbol must be used exactly n− 1 times
in each layer.
If for some third coordinate s two rows sharing this coordinate have

overlap n− 1, one and the same symbol is absent from these two rows, and
thus used at most k − 2 times in the set of rows with third coordinate s,
proving the necessity of the condition.
To prove sufficiency, observe that if the condition holds, each single row

can be completed in a unique way, without conflict between columns sharing
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their third coordinate since each symbol is missing from at most one such
row. Thus, there will be no conflicts between rows in different layers. Also,
because each layer by itself is completable in a unique way (since they are
all partial (n − 1) × n Latin rectangles), there will be no conflicts within
any of the layers. �

Theorem 2.4. For n ≥ 14, any 2× n× 2 Latin box can be completed to a
2× n× n Latin box.

Proof. Let πi,j be the permutation of [n] that defines the j:th row in the
i:th layer for i, j ∈ {1, 2}. We shall seek to find a derangement d such
that d(π2,1(s)) 6= π1,1(s), d(π2,1(s)) 6= π1,2(s), d(π2,2(s)) 6= π1,1(s) and
d(π2,2(s)) 6= π1,2(s) for all symbols 1 ≤ s ≤ n. We will impose some
further restrictions on d, but for now, let’s suppose we’ve found such a d.
We now complete the bottom layer up until the (n−2):th row. In doing

so, however, we will also see to it that we avoid conflicts with d ◦ π2,1 and
d ◦ π2,2. For example, in the first column, we will of course have to avoid
using symbols π1,1(1) and π1,2(1), but we will also avoid symbols d(π2,1(1))
and d(π2,2(1)). With these extra restrictions, since d(π2,1(s)) 6= π1,1(s),
d(π2,1(s)) 6= π1,2(s), d(π2,2(s)) 6= π1,1(s) and d(π2,2(s)) 6= π1,2(s), we can
complete the bottom layer except the last two rows, by Hall’s theorem.
The symbols not yet used in the remaining two cells of the s:th column

of the bottom layer are d(π2,1(s)) and d(π2,2(s)).
To complete the second layer, we place in row 3 ≤ j ≤ n−2 the permuta-

tion d−1 ◦ π1,j . Since d, and hence d
−1 is a derangement, the two layers

will not conflict, and since d(π2,1(s)) 6= π1,j(s) and d(π2,2(s)) 6= π1,j(s) for
all 3 ≤ j ≤ n − 2 and all s, it also holds that d−1 ◦ π1,j will not conflict
with π2,1 and π2,2.
The symbols not yet used in the remaining two cells of the s:th column

of the top layer are d−1(π1,1(s)) and d
−1(π1,2(s)).

One way (which we shall stick to) of completing the last two rows in the
bottom and top layer is by setting π1,n−1 = d ◦ π2,1 and π1,n = d ◦ π2,2
in the bottom layer, and π2,n−1 = d

−1 ◦ π1,1 and π2,n = d
−1 ◦ π1,2 in the

top layer. This means that we have to impose two further restrictions on
d, namely that d(π2,1(s)) 6= d

−1(π1,1(s)) and d(π2,2(s)) 6= d
−1(π1,2(s)).

To summarize, we need a derangement d that satisfies the following
inequalities for each index s:

d(π2,1(s)) 6= π1,1(s)
d(π2,1(s)) 6= π1,2(s)
d(π2,2(s)) 6= π1,1(s)
d(π2,2(s)) 6= π1,2(s)

d(π2,1(s)) 6= d−1(π1,1(s))
d(π2,2(s)) 6= d−1(π1,2(s))
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Finding d is equivalent to finding a matching in the complete bipartite
graph Kn,n with a number of edges removed. First of all, we must remove
edges (i, i), since d must be a derangement. Next, each of the inequalities
above effectively specifies a matching in Kn,n that has to be removed. In
total, we remove 7 matchings, that are not necessarily disjoint, from Kn,n,
yielding a graph G with minimum degree at least n − 7, so if n ≥ 14 the
minimum degree is at least n2 and we can find such a d. �

Generalizing Theorem 2.4 to extending a k×n×m Latin box, for general
k and m, will work in a similar way, but we shall need k− 1 derangements,
which we will select sequentially.

Theorem 2.5. For n ≥ 2(m2(k−1)+m(k−1)2+1), any k×n×m Latin
box can be extended to a k × n× n Latin box.

Proof. Let πi,j be the permutation in the j:th row in the i:th layer. We shall
seek to find a set of derangements di, 2 ≤ i ≤ k such that di(πi,j1(s)) 6=
π1,j2(s) and in general di1(πi1,j1(s)) 6= di2(πi2,j2(s)) for all i1 6= i2, 1 ≤
j1, j2 ≤ m and for all s. These conditions imply in particular that the
derangements are mutual derangements.
Again, we will impose some further restrictions on the di, but for now,

let’s suppose we’ve found such a set of di.
We now complete the bottom layer up until the (n− (k − 1)m):th row.

In doing so, however, we will also see to it that we avoid conflicts with
di ◦ πi,j for all 2 ≤ i ≤ k, 1 ≤ j ≤ m. By Hall’s theorem, this is possible.
To complete the first n − (k − 1)m rows of the i:th layer, we place the

permutation d−1i ◦ π1,j in row m + 1 ≤ j ≤ n − (k − 1)m. Since di is
a derangement, layers 1 and i will not conflict, and since di(πi,j1(s)) 6=
π1,j2(s) for all 1 ≤ j1, j2 ≤ m and all s, there will be no conflicts within
the i:th layer. Also, since di1(s) 6= di2(s) for all s, there will be no conflict
between layers i1 and i2.
The symbols not yet used in the remaining (k − 1)m cells of the s:th

column of the first layer are di(πi,j(s)) for 2 ≤ i ≤ k, 1 ≤ j ≤ m. We can
therefore complete the last (k − 1)m rows in layer 1 without conflict by
setting π1,n−(k−1)m+(i−2)m+j = di ◦ πi,j for 2 ≤ i ≤ k, 1 ≤ j ≤ m.
Let Ii = {2, 3, . . . , k} \ {i}, and fi(·) be the function that maps the i1:th

index in Ii to the number i1. In the s:th column of the i:th layer, 2 ≤ i,
the symbols not yet used in the last (k − 1)m rows are d−1i (π1,j(s)) for

1 ≤ j ≤ k and d−1i (π1,n−(k−1)m+(i1−2)m+j(s)) for i1 ∈ Ii, which translates

to d−1i (di1(πi1,j(s))) for i1 ∈ Ii, 1 ≤ j ≤ k.

To complete these last rows, we choose to set πi,n−(k−1)m+j = d
−1
i ◦π1,j ,

and πi,n−(k−1)m+(fi(i1))m+j = d
−1
i (di1(π1,n−(k−1)m+(i1)m+j)), for i1 ∈ Ii,

1 ≤ j ≤ m. For an illustration of this, see Example 2.6.
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This ensures that there are no conflicts within layer i, but also means
that we have to impose a number of further restrictions on the di, to
avoid conflicts in fibers. For notational convenience, we set d1 = id.
To summarize, we need a set of k − 1 derangements {di}

i=k
i=2 that sat-

isfy the following two sets of inequalities. The first set ensures that rows
(m+1), . . . , (n− (k− 1)m) are completable, and the second set of inequal-
ities ensures that there are no conflicts within fibers intersecting the last
(k − 1)m rows.

di1(πi1,j1(s)) 6= di2(πi2,j2(s)) for i1 6= i2, 1 ≤ j1, j2 ≤ m, all s

For the second set of inequalities, for each 1 ≤ i ≤ k−1, each 1 ≤ j ≤ m,
the following sets of permutations are required to be mutual derangements.

d−1k ◦ di ◦ πi,j
d−1k−1 ◦ di ◦ πi,j
. . .
d−1i+1 ◦ di ◦ πi,j
d−1i ◦ di+1 ◦ πi+1,j
d−1i−1 ◦ di+1 ◦ πi+1,j
. . .
d−11 ◦ di+1 ◦ πi+1,j

We find the di in the natural order, starting with i = 2. For each di, we
take into account only the inequalities involving indices i and lower. Each
successfully found di then restricts the choice of the subsequent derange-
ments. Choosing di is equivalent to finding a perfect matching in a bipartite
graph Gi ⊂ Kn,n. Gi is formed by removing m

2(i − 1) + m(i − 1)2 + 1
matchings from Kn,n. There are m

2(i − 1) conditions of the first type on
di, and m(i−1)

2 conditions of the second type, and finally the 1 is because
d1 = id, so all the di have to be derangements for i ≥ 2. Thus, selecting dk
is the hardest, and this is possible if n ≥ 2(m2(k− 1)+m(k− 1)2+1). �

Example 2.6. In Theorem 2.5, if we set k = 3, m = 2, the last 4 rows
will be as in Figure 1. Note that d1 = d

−1
1 = id.

d−13 ◦ d1 ◦ π1,1 d−13 ◦ d1 ◦ π1,2 d−13 ◦ d2 ◦ π2,1 d−13 ◦ d2 ◦ π2,2
d−12 ◦ d1 ◦ π1,1 d−12 ◦ d1 ◦ π1,2 d−12 ◦ d3 ◦ π3,1 d−12 ◦ d3 ◦ π3,2
d−11 ◦ d2 ◦ π2,1 d−11 ◦ d2 ◦ π2,2 d−11 ◦ d3 ◦ π3,1 d−11 ◦ d3 ◦ π3,2

Figure 1. How to complete the last 4 rows when extend-
ing a 3× n× 2 Latin box to a 3× n× n Latin box

It is testimony to our limited knowledge of hypergraph matchings that
the above results all go to great lengths to reduce problems most naturally
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stated as hypergraph problems to bipartite matching problems. Obtaining
something like a generalization of Hall’s theorem to r-partite r-uniform
hypergraphs would be a great contribution to this area of research.

3. A multi-dimensional Evans’ conjecture

Any partial Latin square with at most n − 1 entries is completable,
as conjectured by Evans, and proven by Smetaniuk. The most natural
generalization of this would be the following conjecture.

Conjecture 3.1. Let P be a partial r-dimensional Latin hypercube of order

n. Suppose that P has at most n− 1 entries. Then P is completable.

Since the proportion of filled cells dwindles rapidly as the number of
dimensions increases, it would seem most reasonable that the conjecture is,
in fact, true. One might even think that we could allow more than n − 1
entries in P , provided of course that no more than n − 1 of them occur
in any 2-dimensional substructure, but as the example in Figure 2 shows,
n − 1 is really best possible. Furthermore, the example easily generalizes
to any order and any dimension.

1
1
1
1

1

Figure 2. The first two layers of an incompletable partial
Latin cube with n entries

Smetaniuk’s proof for the 2-dimensional case cannot be used for higher
dimensions, and one major hurdle is the lack of knowledge about the struc-
ture of Latin cubes. The following lemma essentially only specifies a situ-
ation when a partial Latin cube can be embedded in a cyclic Latin cube,
but obviously, there are many partial Latin cubes that are not this well-
behaved.

Lemma 3.2. Let P be a partial Latin cube of order n. Suppose there exists

a cyclic permutation σ of the symbols 1, . . . , n such that the partial Latin
square P ∗ obtained by superimposing σk−1(lk) for 1 ≤ k ≤ n where lk is
the k:th layer of P , is completable. Then P is completable.

Proof. Observe that P ∗ coincides with all the entries already present in
the bottom layer, and there are no conflicts between P ∗ and any symbols
already present in higher layers, since σ is cyclic. We can therefore let P ∗

be the bottom layer. Further, for k ≥ 1 let layer k be given by σ−k+1(P ∗).
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Since σ is cyclic, and hence the σ−k+1 are mutual derangements, there will
be no conflicts between layers, and σ−k+1(P ∗) will coincide with all entries
already present in layer k. �

Lemma 3.2 can be used to prove Conjecture 3.1 if we know something
about the distribution of the filled cells. An example of this is given in the
following corollary. Also, with appropriate modifications, the lemma can
be extended to arbitrary dimension.

Corollary 3.3. Let P be a partial Latin cube with at most n − 1 entries,
such that no two filled cells share any coordinate. Then P is completable.

Proof. Since no two filled cells share any coordinate, the permutation σ
from Lemma 3.2 can be found quite easily. �

A special case of Lemma 3.2 is when all entries are in one layer, in
which case we complete that layer, and use any cyclic permutation of the
symbols to complete the cube. However, even if we only have n−1 entries,
distributed between just two parallel layers, Lemma 3.2 is not enough.
We conclude this section with a result not covered by Lemma 3.2, where

the entries already present lie in the union of a layer and a slice.

Theorem 3.4. Let P be a partial Latin cube all of whose at most n − 1
entries have either first coordinate 1 or second coordinate 1. Then P is

completable.

Proof. Let L1 be the layer with first coordinate 1, and L2 the slice with
second coordinate 1. Further, let S = L1 ∩ L2, the spine.
By Smetaniuk’s theorem, each Li is completable separately. Suppose

without loss of generality that L1 has fewer entries than L2, and complete
L2 arbitrarily. This of course adds entries to L1, since L1 and L2 share the
cells in S. We denote by L∗ the layer L1 with the additional entries in S
amended. We shall prove that L∗ is completable, and that we subsequently
can complete the whole cube.
L1 has at most ⌊

n−1
2 ⌋ entries, so by permuting rows and columns in L

∗,
keeping S in its place (though entries in S may be rearranged), we can fit
all the entries in L1 \ S in a subsquare R of dimensions ⌊

n−1
2 ⌋ × ⌊

n−1
2 ⌋.

We can assume that R occupies the first ⌊n−12 ⌋ rows of L
∗. We form

R∗ by amending to R the ⌊n−12 ⌋ entries from L
∗ occupying the first ⌊n−12 ⌋

rows. We may then assume that R∗ fits in the first ⌊n−12 ⌋ + 1 columns of
L1. We can easily fill all the empty cells in R

∗, and if we try to extend this
to a completion of L1, we find that the condition from Ryser’s theorem
demands that each symbol be used at least ⌊n−12 ⌋ + ⌊

n−1
2 ⌋ + 1 − n ≤ 0

times, which is trivially satisfied. We still need to consider the entries in
S \ R∗ that we added when completing L2. They may not coincide with
L∗, but if not, we just permute rows of L∗ to make it so.
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We have proven that the two substructures L2 and L1 can be completed
one after the other. To extend this to the whole cube, suppose that the
columns of the filled L1 are the permutations p1, . . . , pk, . . . , pn. To fill cell
(i, j, k) we use the symbol pk(p

−1
k (s(i, 1, k)+j−1)), where s(i, 1, k) denotes

the symbol in position (i, 1, k).
To see that the resulting structure is a Latin cube, observe that all pi

are mutual derangements, so there will be no conflicts in the i-dimension.
Since L1 and L2 have been completed to Latin squares, there will be no
conflict in the j- or k-dimensions. �

4. Concluding remarks

In the proof of Theorem 3.4 a construction of Latin cubes from a layer
and a slice was used. This construction generalizes to arbitrary dimen-
sion. For example, two permutations p1 and p2 with p1(1) = p2(1) can
be ‘composed’ to form a Latin square L = p1 ◦ p2, by taking p1 to be
the first row and p2 the first column and placing in cell (i, j) the symbol
p2(p

−1
2 (p1(j)) + i − 1), where p

−1
2 (p1(j)) + i − 1 is taken modulo n. The

resulting Latin square will have symbols in the same cyclic order p2 in each
column, with the starting points being given by p1. Of course, the roles of
p1 and p2 can be interchanged.
The Latin squares that can be constructed in this way are exactly the

Latin squares that are isotopically equivalent to the basic cyclic Latin
square, namely with entry i + j − 1 modulo n in cell (i, j). For Latin
cubes, the corresponding construction gives more than the cyclic Latin
cubes, with entry i+ j + k − 2 modulo n in cell (i, j, k), but still a far cry
from all Latin cubes.
We would like to pose the following problem, which seems possible to

solve. We conjecture that there indeed is such an N .

Problem 1. Find an N such that n ≥ N implies that any 2×n×n Latin
box is always extendable to a Latin cube of order n.
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