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Abstract. We give a condition on the spatial distribution of filled cells
in a partial Latin square P that is sufficient to ensure completability,
regardless of what symbols are used in the filled cells.
For example, if P is of the order mr + t, where m, r are positive

integers and t ≥ 0, m is odd, and the filled cells of P are contained in
the first m+1

2
r × r subsquares along the main diagonal, our condition

is fulfilled, and P is completable. Another example is if P (of the same
order) has non-empty cells only in the m − 1 first r × r squares along
the main diagonal and r ≥ m−2. In this case, too, our condition holds,
and P is completable.

1. Introduction

An n×n Latin square L is an n×n array filled with the symbols 1, 2, . . . , n
such that no symbol occurs more than once in any row or column. A partial
n×n Latin square P (in short, a PLS) is a partially filled n×n array (using
the symbols 1, 2, . . . , n) satisfying the condition that no symbol is used more
than once in any row or column. P is said to be completable if there is some
way of filling the empty cells of P to form a Latin square.
The purpose of this note is to generalize a result of Denley and Häggkvist

on the completion of Latin squares. The theorem in question reads as follows
(slightly reformulated to suit the subsequent generalizations), and can be
found as Theorem 11.4.10 in [1], or in [2].

Theorem 1.1. Let n = 3r for some r ≥ 1. Further, let P be a partial
n × n Latin square with non-empty cells only in the top left 2r × 2r square
T . Suppose that the columns of T may be grouped together in pairs, Gi,
1 ≤ i ≤ r, such that in each row there is at most one filled cell from each
such pair of columns. Then P is completable if and only if there is some
way of filling in the cells of T .

In particular, we will adapt the same method of proof for the cases when
n = mr for any m, and also when n = mr+ t for any m and some 0 ≤ t < r.
The inspiration for this line of research is the following conjecture.

Conjecture 1.2. (Häggkvist, 1980) Any partial mr×mr Latin square whose
filled cells lie in (m− 1) disjoint r × r squares can be completed.

In the proof of the main theorem, we will need some preliminary results.
The following proposition can be found as Proposition 8.2.9. in [1]. A col-
ouring with the property described there is called a V1-sequential colouring.

Proposition 1.3. Let G be a bipartite graph with bipartition (V1, V2). If
d(x) ≥ d(y) for each pair of adjacent vertices x ∈ V1 and y ∈ V2, then G
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has a colouring such that the colours of the neighbours of any x ∈ V1 are
precisely the colours 1, 2, . . . , d(x).

We shall also use a simple lemma, the proof of which is left as an easy
exercise for the reader:

Lemma 1.4. Let D be a bipartite digraph with bipartition (V1, V2), and
S0 ( V2. If for each vertex σ ∈ S0 it holds that d

+(σ) ≥ d−(σ), and for each
vertex ρ ∈ N(S0), the neighbour set of S0, it holds that d

+(ρ) ≥ d−(ρ), then
for each σ0 ∈ S0 with d

−(σ0) < d
+(σ0), there is a directed walk originating

in σ0 and ending in V2 \ S0.

Finally, the following two well-known theorems will also be most useful.

Theorem 1.5. (Ryser [4]) Let P be an n× n partial Latin square, whose
upper left r × s subsquare is completely filled, and no other cells are filled.
Then P is completable if and only if each symbol occurs at least (r + s)− n
times in P .

Theorem 1.6. (Galvin [3]) Let B be a bipartite multigraph, with lists Le
of permissible colours on each edge e = (u, v). If |Le| ≥ max{d(u), d(v)}
for each edge e, there exists a proper edge colouring of B using only colours
from the lists.

2. Theorem and corollaries

The main theorem may be stated as follows (Theorem 2.1), with the
relevant parameters specified explicitly, but from the readability point of
view, the formulation given in Theorem 2.6 might be more pleasing, where
a more direct bound on the size n of the PLS is given.

Theorem 2.1. Let P be a partial (mr + t)× (mr + t) Latin square, 0 ≤ t,
whose filled cells all lie in an ℓr × ℓr subsquare T , where ℓ < m. Further,
suppose the columns of T can be grouped into r sets of ℓ columns each, Gi,
where for each row ρ in T and each Gi, at most one cell in ρ ∩ Gi is filled
(where we view both ρ and Gi as sets of cells). Finally, suppose that the
parameters m, r, t and ℓ satisfy the equation (m − ℓ)r + t ≥ 2ℓ −m − t

r
.

Then P is completable iff there is some way of filling the cells in T .

Proof. The necessity of the final statement is trivial, and for sufficiency, we
start by properly filling the cells of T in some arbitrary way, producing a
new subsquare T ′. We shall refer to the cells of T ′ that were filled from
the start by T0, and the additional cells filled by Tf . The goal will be to
rearrange and exchange the symbols used in the cells of Tf in such a way
that each symbol is used at least ℓr + ℓr − (mr + t) = (2ℓ−m)r − t times
in T ′, and then apply Ryser’s theorem, that is Theorem 1.5, to ensure the
possibility of completing the Latin square.
We define a bipartite graph H which has bipartition V1, V2, where V1

represents the set of ℓr rows of T and V2 represents the set ofmr+t symbols.
In H, we join a vertex ρ ∈ V1 to a vertex σ ∈ V2 with an edge eρσ whenever
the symbol σ does not occur in row ρ in the original partial Latin square P .
Now we colour the edge eρσ with colour c (a column) if the symbol σ was
placed in the empty cell (ρ, c) when Tf was filled. We shall refer to those
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edges which receive no column in this way as the uncoloured edges. These
edges correspond to the pairs of symbols/rows where that particular symbol
was not used in that particular row in Tf .
Finally we provide each vertex ρ ∈ V1 with the list F (ρ) of columns in

which row ρ was filled already in P (the Filled columns), corresponding to
edges that are not present in H.
We say that a symbol σ0 is globally deficient if it has been used strictly

less than (2ℓ−m)r − t times in T ′. For each globally deficient symbol, we
can find a Gi where σ0 has been used strictly less than 2ℓ −m −

t
r
times,

and we say that σ0 is locally deficient in Gi. For a given globally deficient
symbol σ0, locally deficient in Gi, we define S0 to be the set of symbols that
are used less than or equal to r(2ℓ−m)− t times in T ′, and occur less than
or equal to 2ℓ−m− t

r
times in Gi.

First, if T has been filled, and it were the case that S0 = V2, we would have
that themr+t symbols in S0 have each been used at most r(2ℓ−m)−t times,
in total (mr + t)[(2ℓ−m)r − t] entries. However, T has ℓ2r2 cells, and for
ℓ < m it holds that (mr+t)[(2ℓ−m)r−t] = 2mr2ℓ+2rℓt−m2r2−2mrt−t2 ≤
2mr2ℓ−m2r2 < ℓ2r2, a contradiction. Hence S0 6= V2.
Further, let H0 be the subgraph of H induced by the uncoloured edges

in H incident with symbols in S0. We define R0 = V1 ∩H0, so that H0 has
bipartition (R0, S0). The degrees inH0 satisfy dH0(σ) ≥ ℓr−[(2ℓ−m)r−t] =
(m − ℓ)r + t (the number of rows of T in which the symbol σ ∈ S0 is not
used when filling Tf ) for all σ ∈ S0 and dH0(ρ) ≤ mr+ t− ℓr = (m− ℓ)r+ t
(the number of symbols in S0 not used in row ρ) for all ρ ∈ R0. Thus
dH0(ρ) ≤ dH0(σ) for each pair (ρ, σ) ∈ (R0, S0).
Our aim will be to redistribute the symbols so that σ0 appears in a suffi-

cient number of the columns in Gi. Indeed, by repeating the same argument,
we will ensure this for every globally deficient symbol and every Gi where
it is locally deficient, and thus ensure that every symbol appears at least
(2ℓ −m)r − t times in T ′. To do this, we first find a [(m − ℓ)r + t]-factor
from S0 into R0.
By Proposition 1.3, H0 has an edge colouring such that exactly the colours

1, 2, . . . , dH0(σ) are used at each σ ∈ S0. We pick out the edges coloured
1, 2, . . . , (2ℓ−m− t

r
), which is less than dH0(σ) ≥ (m−ℓ)r+t by assumption,

and call this set of uncoloured edges M .
Now, let D be the bipartite digraph with bipartition (R0, V2), edges M

directed from the right to the left, and all edges incident with R0 coloured
with columns from Gi directed from the left to the right.
By the definition of M , it holds that the outdegree d+D(σ) = 2ℓ −m −

t
r

for any σ ∈ S0. Also, since by the defintion of S0 each σ ∈ S0 occurs at most
(2ℓ−m− t

r
) times in the Gi in question, we have that d

−

D(σ) ≤ (2ℓ−m−
t
r
),

and thus d+D(σ) ≥ d
−

D(σ) for all σ ∈ S0.

The indegree of a row ρ ∈ R0 is at most (2ℓ−m−
t
r
), since M is coloured

properly with this number of colours. The outdegree at any ρ ∈ V1 is at
least ℓ − 1 (the number of columns in Gi \ F (ρ)). For any ℓ < m, It holds
that (2ℓ −m − t

r
) < ℓ − 1, so d+D(ρ) ≥ d

−

D(ρ) for each ρ ∈ R0. We see also

that d−D(σ0) < d
+
D(σ0), since σ0 is locally deficient in Gi.
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By Lemma 1.4, we find a walk W in D that starts in σ0 and ends in
σk ∈ V2 \ S0. The edges in W are thus elements of the form eρiσj = (ρi, σj),
where ρi is a row in R0 and σj is a symbol in V2. Edges are either uncoloured,
if symbol σj is not used in row ρi, or coloured with column cj if symbol σj
is used in row ρi, column cj.
We now recolour the edge eρjσj ∈W with colour cj and uncolour eρjσj+1

for 0 ≤ j ≤ k − 1, thus leaving the last edge in W uncoloured.
Observe that after this recolouring, the symbol σ0 will appear in precisely

one more of the columns in Gi, namely column c0. Each of the symbols
σ1, . . . , σk−1 will still appear in the same number of columns in Gi.
The symbol σk 6∈ S0 now appears in one cell less. However, since σk 6∈ S0,

σk either appeared at least (2ℓ−m)r−t+1 times in T
′ and thus still appears

at least (2ℓ−m)r − t times, and has thus not become globally deficient, or
it was used in at least 2ℓ −m − t

r
+ 1 of the columns in Gi, and thus still

in at least 2ℓ−m− t
r
columns of Gi and is thus not locally deficient for Gi.

Only the entries in columns Gi have been changed, and so the only possible
new deficiency is that symbol σk may have become globally deficient, and in
this case because it must have already been locally deficient in some other
set of columns, Gj . This, however, will be remedied separately in Gj where
σk was not used a sufficient number of times. The important thing to note
is that no new local deficiencies are created.
To state this point again: Each step of the process may create one new

global deficiency — in symbol σk, but the local deficiency in that symbol
whose existence is then certain was already present before our recolouring
of Gi.
By repeating this process for each globally deficient symbol and each set

Gi where it is locally deficient, we will eventually have ensured that each
previously globally deficient symbol appears in at least (2ℓ−m− t

r
) of the

columns in each Gi, and therefore at least (2ℓ−m)r− t times in T
′ in total.

By Ryser’s theorem, the modified T ′ can be completed to a Latin square. �

Example 2.2. Let t = 0, m = 5 and r = 2, so that n = 10. Let the
upper left 6 × 6 corner T ⊂ P be as in Figure 1, left, and the rest of P
empty. Obviously, we may take G1 = {1, 3, 5} and G2 = {2, 4, 6}. The
Ryser condition for P is then that each of the ten symbols be used at least
6 + 6 − 10 = 2 times in T ′, (for example at least once in each of G1 and
G2). By inspection, each of the symbols 1, . . . , 9 are used sufficiently many
times.
Therefore the only globally deficient symbol is a, and it is locally deficient

in G1. Also, S0 = {a}, and R0 = {1, 2, 3, 5, 6}, the rows in which the symbol
a wasn’t used. Then H0 ≃ K5,1, which can obviously be given a V2-sequential
colouring. Suppose we chooseM = {e6,a}, and find the walkW = (e6,a, e6,9),
where the first edge is uncoloured, and the second edge is coloured with the
column 3, that is the column in which row 6 holds the symbol 9, as indicated
by bold face in Figure 1.
We now uncolour the edge e6,9, and colour the edge e6,a with colour 3,

which amounts to replacing the 9 with the symbol a. After this recoulouring,
a is no longer deficient, neither globally nor locally, but we have created a
new global deficiency, in symbol 9. Note that this possibility of creating a
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1 2
2 1

1 3
2 1

1 3
2 4

1 2 3 4 5 6
2 1 7 8 4 5
9 5 1 3 6 8
8 4 2 1 3 a
5 6 4 7 1 3
6 7 9 5 2 4

3 5
7 4

9 6
8 3
5 4
6 9

Figure 1. The upper left 6 × 6 corner of a 10 × 10 partial
Latin square P , an arbitrary filling of its upper left 6 × 6
corner, and the cells of G1 involved in the recolouring.

single new globally deficient symbol was handled in the proof of Theorem 2.1.
We see that 9 is locally deficient in G2, which was the case already before our
recolouring, and a similar recolouring argument will ensure that 9 is used at
least once in G2, for example in cell (6, 4). After that second recolouring,
no symbols are globally deficient, and Ryser’s theorem can be applied.

In general, using Galvin’s theorem to ensure that completing T is possible,
by first translating T into a bipartite graph, and defining lists by taking into
account what symbols are already present in T , and choosing r and ℓ, we
get a range of corollaries, of which we present two examples.
Note that the case r = 1, ℓ = m − 1 in the next corollary, which is not

covered byTheorem 2.1 is a special case of Evans’ conjecture, that was solved
by Smetaniuk:

Theorem 2.3. (Smetaniuk [5]) Let P be an n × n partial Latin square
with at most n− 1 cells filled. Then P is completable.

The case m = 2 follows from Ryser’s theorem, and the case m = 3, r ≥ 2
is a corollary to Theorem 1.1, using Galvin’s theorem.

Corollary 2.4. Let P be a partial Latin mr×mr square, where m is odd, all
of whose entries lie in the m+1

2
first r × r squares along the main diagonal.

Then P is completable.

Proof. By Galvin’s theorem the top left rm+1
2
× rm+1

2
square T can be

completed. The result follows from Theorem 2.1 by setting ℓ = m+1
2
. �

Corollary 2.5. Let P be a partial (mr+ t)× (mr + t) Latin square, where
t ≥ 0, with non-empty cells only in the m − 1 first r × r squares along the
main diagonal. Further suppose that r ≥ m− 2. Then P is completable.

Proof. By Galvin’s theorem the top left r(m− 1)× r(m− 1) square T can
be completed. The result follows from Theorem 2.1 by setting ℓ = m − 1.
The condition on r is exactly what follows from (m− ℓ)r + t ≥ 2ℓ−m− t

r

by assuming the worst, namely that t = 0. �

As noted above, Theorem 2.1 may be restated as follows, by setting n =
mr + t and eliminating m and t.

Theorem 2.6. Let P be a partial n×n Latin square, whose filled cells all lie
in an ℓr × ℓr subsquare T , where r+2

r+1
rℓ ≤ n. Further, suppose the columns

of T can be grouped into r sets of ℓ columns each, Gi, where for each row
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ρ in T and each Gi, at most one cell in ρ ∩Gi is filled (where we view both
ρ and Gi as sets of cells). Then P is completable iff there is some way of
filling the cells in T .

3. Concluding remarks

In order to approach Conjecture 1.2 from Theorem 2.1, it would seem
that we need some way of grouping columns (or, by symmetry, rows) so
that in each group each row is used at most once. In general, this will not
be possible, and examples for this are easily found.
The first observation is that if no two r × r subsquares intersect any

common row (or column) we can find the desired grouping Gi, 1 ≤ i ≤ r.
If two r × r subsquares intersect, then the column grouping condition can
in general not be satisfied. In spite of this, we would like to propose the
following strengthening of Conjecture 1.2. If nothing else, it at least has the
merit that it might be easier to find counter-examples to it.

Conjecture 3.1. Any partial n × n Latin square P , whose filled cells can
be covered by (m− 1) possibly intersecting r × r subsquares, where mr ≤ n,
is completable.
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